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ABSTRACT: Metrics are fundamental to quantify and classify the spatial dependence of 
soil and agricultural attributes. This study aimed to propose and validate metrics based on 
two distinct approaches, one additive, which considers the arithmetic mean of the vertical 
and horizontal components, and the other multiplicative, which considers the geometric 
mean of the vertical and horizontal components of the semivariogram. Furthermore, we 
intend to propose the classification of spatial dependence based on the categorization 
of these metrics. Finally, a function in R language is presented to calculate the metrics 
and classify spatial dependence. The spatial dependence arithmetic index 1 (SDAI1) and 
spatial dependence arithmetic index 2 (SDAI2) are constructed in a dimensionless way, 
in the range between 0 and 100 %, considering the sum (arithmetic mean) between 
the vertical and horizontal components of the semivariogram. The spatial dependence 
geometric index 1 (SDGI1) and the spatial dependence geometric index 2 (SDGI2) are 
constructed in a dimensionless way, in the range between 0 and 100 %, considering 
the multiplication (geometric mean) between the vertical and horizontal components 
of the semivariogram. The SDAI1, SDAI2, SDGI1, and SDGI2 metrics are compared with 
other metrics existing in the literature, such as the spatial dependence degree (SPD), the 
integral scales J1 and J2, the mean correlation distance (MCD), the spatial dependence 
index (SDI), and the spatial dependence measure (SDM). For different spatial dependence 
scenarios, correlations are calculated between the geostatistical-based metrics and 
the performance measures Moran’s I, mean squared error (MSE), and kriging variance 
(KV). The metrics perform well in describing spatial dependence, with the exception of 
J1 (or MCD) and J2. However, the SDAI1, SDAI2, and SDGI1 metrics have slightly better 
correlations with the Moran’s I, MSE, and KV measures, when compared to the SDI, 
SDM, SDGI2, and SPD metrics. Furthermore, the SDAI1 and SDAI2 metrics show superior 
performance in capturing the vertical and horizontal effects of the semivariogram. 
Finally, a function in R language was developed to calculate the metrics and classify 
spatial dependence.
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INTRODUCTION

Geostatistics is widely applied in agricultural sciences to predict and map soil and 
agricultural attributes, and is essential in the context of Agriculture 4.0 (Rodrigues et al., 
2020). At the heart of the use of Geostatistics is spatial dependence, which conceptually 
is characterized by the way in which geospatial locations correlate.

Quantification of spatial dependence is generally performed using metrics derived from 
semivariogram parameters (Padilha et al., 2024) or by measures of spatial autocorrelation, 
such as Moran’s I (Moran, 1950) or Geary’s C (Geary, 1954). Among the metrics derived 
from the semivariogram, the following stand out: the relative nugget effect (RNE), 
presented in Cambardella et al. (1994), the integral scales J1 and J2, presented in Russo 
and Jury (1987), the mean correlation distance (MCD), given in Han et al. (1994), the 
spatial dependence degree (SPD), presented in Biondi et al. (1994), the spatial dependence 
index (SDI), proposed by Seidel and Oliveira (2014), and the spatial dependence measure 
(SDM), proposed by Appel Neto et al. (2020). Spatial dependence metrics play a prominent 
role for two main purposes: (I) they allow the early assessment of the quality of kriging 
predictions, since the stronger the spatial dependence, the more accurate the kriging 
prediction; (II) they allow the comparison of the spatial variability observed in different 
attributes in different fields.

Among the semivariogram parameters, the range parameter (a) describes the spatial 
variability in the horizontal direction of the graph, while the nugget effect (C0), partial sill 
(C1), and sill (C) describe the spatial variability in the vertical direction of the semivariogram 
(Santos et al., 2018). Seidel and Oliveira (2012) presented a measure called the combined 
spatial dependence index (CSDI), composed of a component that captures the variability 
in the vertical direction of the semivariogram (VSDI) and a component that captures the 
variability in the horizontal direction of the semivariogram (HSDI). The VSDI considers 
the relationship between the C1 and the C in the same way as the index of Biondi et 
al. (1994). The HSDI considers the relationship between the a and half of the greatest 
distance between sampled points ( 0.5 MD). The combination of vertical and horizontal 
parameters of the semivariogram is also present in a multiplicative form in the J1 and 
J2 (Russo and Jury, 1987), MCD (Han et al., 1994), SDI (Seidel and Oliveira, 2014; Appel 
Neto et al., 2018; Uribe-Opazo et al., 2023), SDM (Appel Neto et al., 2020), and adapted 
RNE (Zhao et al., 2023) measures.

Assessing spatial variability within the field is a concern for many researchers (Cambardella 
et al., 1994; Taylor et al., 2007; Herrero-Langreo et al., 2019; Leroux and Tisseyre, 
2019; Sandonís-Pozo et al., 2022; Jang et al., 2023; Zhao et al., 2023), as there may be 
heterogeneities in field factors that directly influence agricultural productivity (Leroux and 
Tisseyre, 2019) and production profitability (Zhao et al., 2023). Thus, the construction 
and comparison of different metrics for quantifying spatial dependence, derived from 
the semivariogram, are important.

This study aimed to propose and validate metrics based on two distinct approaches: 
an additive one, which considers the arithmetic mean of the vertical and horizontal 
components (metric =

vertical component + horizontal component
2 ) , and a multiplicative one, 

which considers the geometric mean of the vertical and horizontal components of the 
semivariogram (metric = 2

√
vertical component × horizontal component) . Furthermore, we 

intend to propose the classification of spatial dependence based on the categorization 
of such metrics. Finally, a function in R language is presented to calculate the metrics 
and classify spatial dependence.
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MATERIALS AND METHODS
Vertical components describe the spatial variability in the vertical direction of the 
semivariogram, being given in the interval from zero are given by equations 1 and 2, 
respectively.

VC1 =

(
C1

C0 + C1

)
Eq. 1

and

VC2 = 2

√(
C1

C0 + C1

)
Eq. 2

in which: C0 is the nugget effect and C0 is the partial sill.

The horizontal component HC is given by equation 3.

HC = min
{
1; a
0.5 MD

}
Eq. 3

in which: a is the range; MD is the maximum distance between points on the sampling 
grid; and min{*} is the minimum function.

The HC describes the spatial variability in the horizontal direction of the semivariogram, 
being given in the interval from zero to one, that is, applying the min{*} function ensures 
that this component assumes values only in the interval [0, 1]. The 0.5 MD factor is 
based on practical recommendations for using pairs of locations up to half of the largest 
sampling distance to estimate semivariances (Journel and Huijbregts, 2003; Olea, 2006). 
The construction of the metrics is based on the simple arithmetic mean (equation 4) and 
the simple geometric mean (equation 5).

Xa =
1 VCi + 1 HC

2
Eq. 4

Xg =
2
√
VCi1 HC1 Eq. 5

in which: VCi is the i-th vertical component, i=1,2; and HC is the horizontal component.

Spatial dependence arithmetic index 1 (SDAI1) and the spatial dependence arithmetic 
index 2 (SDAI2) are constructed in a dimensionless way, in the interval between 0 and 
100 %, considering the arithmetic mean between the vertical and horizontal components 
of the semivariogram.

The SDAI1 is given by equation 6.

SDAI1 (%) =

(
C1

C0+C1

)
+

(
min

{
1; a

0.5 MD
})

2 × 100 Eq. 6
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in which: C0 is the nugget effect; C1 is the partial sill; a is the range; MD is the maximum 
distance between points on the sampling grid; and min{*} is the minimum function. 
0 ≤

(
C1

C0 + C1

)
≤ 1 . 0 ≤ min

{
1; a
0.5 MD

}
≤ 1. The SDAI1 was originally presented as CSDI by 

Seidel and Oliveira (2012).

The SDAI2 is given by equation 7.

SDAI2 (%) =

2

√(
C1

C0+C1

)
+
(
min

{
1; a

0.5 MD
})

2 × 100 Eq. 7

in which: C0 is the nugget effect; C1 is the partial sill; a is the range; and MD is the 
maximum distance between points on the sampling grid; and min{*} is the minimum 
function: 0 ≤ 2

√(
C1

C0 + C1

)
≤ 1 ; 0 ≤ min

{
1; a
0.5×MD

}
≤ 1 .

Spatial dependence geometric index 1 (SDGI1) and the spatial dependence geometric 
index 2 (SDGI2) are constructed in a dimensionless way, in the interval between 0 and 
100 %, considering the geometric mean between the vertical and horizontal components 
of the semivariogram.

The SDGI1 is given by equation 8.

SDGI1 (%) = 2

√(
C1

C0 + C1

) (
min

{
1; a
0.5 MD

})
× 100 Eq. 8

in which: C0 is the nugget effect; C1 is the partial sill; a is the range; MD is the maximum 
distance between points on the sampling grid; and min{*} is the minimum function: 
0 ≤

(
C1

C0 + C1

)
≤ 1 ; 0 ≤ min

{
1; a
0.5 MD

}
≤ 1 .

The SDGI2 is given by equation 9.

SDGI2 (%) =
2

√√√√ 2

√(
C1

C0 + C1

) (
min

{
1; a
0.5 MD

})
× 100 Eq. 9

in which: C0 is the nugget effect; C1 is the partial sill; a is the range; MD is the maximum 
distance between points on the sampling grid; and min{*} is the minimum function. 
0 ≤ 2

√(
C1

C0 + C1

)
≤ 1. 0 ≤ min

{
1; a
0.5 MD

}
≤ 1 .

To carry out the classification of the SDAI1, SDAI2, SDGI1, and SDGI2, a methodology 
adapted from Seidel and Oliveira (2016), Appel Neto et al. (2018), and Appel Neto et al. 
(2020) was used. Values were generated for the components 

(
C1

C0 + C1

)
 or 2

√(
C1

C0 + C1

)
 and 

min
{
1; a
0.5 MD

}
, from 0.05 to 1.00, varying by 0.05. Subsequently, these values were 

combined by arithmetic means for SDAI1 and SDAI2, and by geometric means for SDGI1 
and SDGI2, which generated a vector of 400 values that was increased by a zero value. 
The first and the third quartiles of the vector were considered as cut-offs to categorize 
the metrics, and classify the spatial dependence as weak, moderate, and strong.

The SDAI2 and SDGI2 metrics are constructed to give greater value to the vertical 
component of the semivariogram because it is given by the square root of values in the 
interval [0, 1], in the same way as performed in J2 (Russo and Jury, 1987) and in SDM 
(Appel Neto et al., 2020). Equation 10 shows the result for 0 ≤

(
C1

C0 + C1

)
≤ 1.
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


2

√(
C1

C0+C1

)
=

(
C1

C0+C1

)
, if

(
C1

C0+C1

)
= 0 or

(
C1

C0+C1

)
= 1,

2

√(
C1

C0+C1

)
>

(
C1

C0+C1

)
, if 0 <

(
C1

C0+C1

)
< 1. Eq. 10

in which: C0 is the nugget effect; and C1 is the partial sill.

In addition to proposing the measures SDAI1, SDAI2, SDGI1, and SDGI2 and their respective 
classifications of spatial dependence, the SDI, SDM, SPD, and MCD, and the integral 
scales J1 and J2 are also evaluated. It follows that MCD and J1 are identical, that is, MCD 
is the closed form of the integral scale J1. Furthermore, it is decided to use the SPD and 
not the RNE, because SPD(%) = 100 - RNE(%).

To evaluate the performance of the metrics, the associations with their components, 
and compare them with some of the indices used in the literature, scenarios of spatial 
variability (considering weak to strong spatial dependence) were simulated in the geoR 
package (Ribeiro Junior et al., 2020), from R software (R Development Core Team, 2021) 
in the same way as in Appel Neto et al. (2020). The scenarios were composed with the 
following parameters: C1 values of 10, 25, 50, 75, and 90 % of C = 50; a values of 10, 25, 
50, 75, and 90 % of 0.5 MD = 70.71 m, in a random field with mean equal to zero, with 
n = 169, in a 100 × 100 m regular sampling grid, totaling 25 scenarios for each of the 
exponential, Gaussian and spherical models. Each scenario was replicated 100 times to 
mitigate possible variations in the simulation algorithm. With the 100 values generated 
from each scenario, the means of the metrics and, as performance measures, the means 
of the Moran's I, mean squared error (MSE), and kriging variance (KV) generated by 
cross-validation were calculated. Finally, Pearson correlation between the metrics and 
performance measures was calculated.

In addition, a function in R is presented to calculate the metrics and classify spatial 
dependence. Finally, to exemplify the application of the metrics in the proposal for data 
classification, the soilmoisture and the NVDI data sets from the geotoolsR package 
(Rossoni and Felix, 2020) were used.

RESULTS AND DISCUSSION
The simulations of the values of SDAI1, SDAI2, SDGI1, and SDGI2 show statistically 
symmetric behaviors (Figure 1), with skewness coefficients of -0.02 (p = 0.8510), -0.17  
(p = 0.1688), 0.23 (p = 0.0628), and -0.08 (p = 0.4990), respectively. The fact that there is 
symmetry in the metric distributions allows the classification of spatial dependence based 
on the first and third quartiles, since symmetry gives both sides of the distribution the 
same frequency (probabilistic) weight. The proposed classification of spatial dependence 
for the metrics SDAI1, SDAI2, SDGI1, and SDGI2 is presented in table 1. For categorization, 
the quartile values were rounded to integer values. Cambardella et al. (1994) also used 
quartiles (1st quartile = 25 %; 3rd quartile = 75 %) in the RNE categorization cut-offs to 
generate three classes (weak; moderate; strong) of spatial dependence. Similarly, Barbosa 
et al. (2017) used quartiles (1st quartile = 25 %; 3rd quartile = 75 %) in the categorization 
cut-offs in the proposal of a measure equivalent to the SPD, in the power semivariogram 
model, to generate three classes (weak; moderate; strong) of spatial dependence.

Table 2 presents the correlations between the spatial dependence measures (SDI, SDM, 
SDAI1, SDAI2, SDGI1, and SDGI2) and the performance measures (Moran’s I, MSE, and 
KV). We see that the SDI and SDM measures present strong negative correlations with 
MSE and KV in the Gaussian and spherical models. In the exponential model, SDI and 
SDM are strongly negatively correlated with KV and moderately negatively correlated 
with MSE. Furthermore, SDI and SDM are strongly positively correlated with Moran's 
I in the Gaussian and spherical models, and moderately positively correlated in the 
exponential model.
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Figure 1. Simulated behavior (Histogram and Boxplot) of Spatial dependence arithmetic index 
1 (SDAI1) (a), Spatial dependence arithmetic index 2 (SDAI2) (b), Spatial dependence geometric 
index 1 (SDGI1) (c), and Spatial dependence geometric index 2 (SDGI2) (d).
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Standard deviation = 20.55; Skewness coefficient = -0.02; D'Agostino test for skewness (p = 0.8510).
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Standard deviation = 18.47; Skewness coefficient = -0.17; D'Agostino test for skewness (p = 0.1688).
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* Minimum = 0.00; First quartile = 29.58; Median = 45.83; Third quartile = 64.23; Maximum = 100.00; Mean = 52.37; 
Standard deviation = 22.42; Skewness coefficient = 0.23; D'Agostino test for skewness (p = 0.0628).
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Standard deviation = 21.24; Skewness coefficient = -0.08; D'Agostino test for skewness (p = 0.4990).
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Seidel and Oliveira (2014) observed an excellent relationship between the SDI and MSE in 
the spherical and Gaussian models, and a good relationship between the SPD and the MSE 
for the exponential model. Appel Neto et al. (2020) observed strong negative correlations 
between the SDI and SDM indices and the MSE and KV performance measures for the 
spherical, exponential, Gaussian, and cubic models, and strong negative correlations 
between the SPD and the MSE and KV performance measures in the exponential, Gaussian, 
and wave models.

The SDAI1 and SDAI2 measures present strong negative correlations with MSE and KV 
and strong positive correlations with Moran's I in all three models. The SDGI1 measure 
has strong negative correlations with MSE and KV, and a strong positive correlation with 
Moran's I in all three models. The SDGI2 measure shows a strong negative correlation with 
the MSE in the Gaussian and spherical models, and a moderate negative correlation in 
the exponential model. In addition, the SDGI2 measure has a strong negative correlation 
with the KV and a strong positive correlation with Moran's I in all three models.

The J1 (or MCD) and J2 measures show weak positive correlations with MSE and KV and 
weak negative correlations with Moran's I in all three models. The SPD shows strong 
negative correlations with MSE and KV for the Gaussian model, and moderate negative 
correlations in the exponential and spherical models. Furthermore, the SPD presents a 
moderate positive correlation with Moran's I in all three models. Fu et al. (2011) observed 
a strong correlation ( R2 = 0.8578) between the RNE and Moran’s I (or strong correlation 
between SPD and Moran’s I).

In theory, it is expected that higher values of spatial dependence should be related to 
lower values of MSE and KV and higher values of Moran's I. Thus, the measures SDAI1, 
SDAI2, and SDGI1 tend to present slightly better results when compared to SDI and 
SDM, SDGI2, SPD, J1 (or MCD), and J2, in this aspect. These relevant metrics correlations 
for models corroborate the perception that metrics that summarize the entire spatial 
dependency structure in a single number are possible.

Spatial dependence metrics are associated with cross-validation performance measures, 
and according to Appel Neto et al. (2018), spatial dependence metrics can indicate 
the quality of kriging prediction maps. However, Amaral and Della Justina (2019), in a 
study with soil samples from sugarcane fields, observed that the SPD, SDI, and Moran’s 
I metrics presented limitations when trying to assess the accuracy of predictions by 
interpolation. Even considering these limitations, the search for an metric that allows the 
classification of the spatial variability structure present in a phenomenon is of notorious 
importance, since only with the use of a single number (the calculated value of the 
metric) is it possible to compare and hierarchize spatial phenomena, and, therefore, to 
recommend the appropriate management of different phenomena, especially when a 
trade-off decision regarding the application of resources needs to be made.

The component min
{
1; a
0.5 MD

}
 presents strong positive correlations with SDI, SDM, 

SDAI1, SDAI2, SDGI1, and SDGI2, and a weak correlation with SPD in the three models. 

Table 1. Proposed classification of spatial dependence for the metrics Spatial dependence 
arithmetic index 1 (SDAI1), Spatial dependence arithmetic index 2 (SDAI2), Spatial dependence 
geometric index 1 (SDGI1), and Spatial dependence geometric index 2 (SDGI2)

Metric
Classification

Weak Moderate Strong
SDAI1 0 to 38 38 to 68 68 to 100
SDAI2 0 to 48 48 to 75 75 to 100
SDGI1 0 to 30 30 to 64 64 to 100
SDGI2 0 to 40 40 to 73 73 to 100
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Table 2. Pearson correlation between spatial dependence index (SDI), spatial dependence measure (SDM), spatial dependence 
arithmetic index 1 (SDAI1), spatial dependence arithmetic index 2 (SDAI2), spatial dependence geometric index 1 (SDGI1), spatial 
dependence geometric index 2 (SDGI2), integral scales J1 and J2, mean correlation distance (MCD), spatial dependence degree 
(SPD), component 

(
C1

C0 + C1

)
 ($), component 2

√(
C1

C0 + C1

)
 (£), component min

{
1; a

0.5×MD

}
 (#), and Moran’s I, Mean square error (MSE), 

and Kriging variance (KV). Simulated data

X SDI SDM SDAI1 SDAI2 SDGI1 SDGI2 J1 (or MCD) J2 SPD
Exponential semivariogram model

SDM 0.985
SDAI1 0.906 0.923
SDAI2 0.909 0.942 0.992
SDGI1 0.966 0.987 0.963 0.976
SDGI2 0.945 0.984 0.943 0.969 0.991
J1 (or MCD) 0.257 0.217 0.004 0.015 0.095 0.126
J2 0.257 0.217 0.003 0.015 0.095 0.126 0.999
SPD 0.332 0.288 0.603 0.525 0.407 0.318 -0.444 -0.444
$ 0.332 0.288 0.603 0.525 0.407 0.318 -0.444 -0.444 1.000
£ 0.261 0.239 0.564 0.503 0.371 0.291 -0.541 -0.541 0.980
# 0.921 0.969 0.870 0.908 0.945 0.975 0.279 0.279 0.131
I Moran 0.681 0.698 0.793 0.796 0.781 0.732 -0.379 -0.379 0.654
MSE -0.672 -0.673 -0.770 -0.764 -0.754 -0.694 0.377 0.378 -0.683
KV -0.709 -0.707 -0.789 -0.784 -0.780 -0.720 0.336 0.336 -0.667

Gaussian semivariogram model
SDM 0.982
SDAI1 0.942 0.938
SDAI2 0.946 0.961 0.992
SDGI1 0.985 0.986 0.968 0.979
SDGI2 0.958 0.992 0.940 0.970 0.981
J1 (or MCD) 0.016 0.089 0.014 0.049 0.013 0.112
J2 0.016 0.091 0.015 0.050 0.015 0.114 0.999
SPD 0.474 0.358 0.619 0.529 0.495 0.341 -0.359 -0.361
$ 0.474 0.358 0.619 0.529 0.495 0.341 -0.359 -0.361 1.000
£ 0.437 0.329 0.588 0.508 0.472 0.320 -0.397 -0.399 0.989
# 0.864 0.939 0.837 0.889 0.883 0.954 0.268 0.270 0.087
I Moran 0.908 0.849 0.873 0.857 0.911 0.825 -0.193 -0.193 0.684
MSE -0.838 -0.776 -0.822 -0.802 -0.860 -0.765 0.245 0.246 -0.713
KV -0.883 -0.822 -0.856 -0.838 -0.894 -0.804 0.221 0.221 -0.702

Spherical semivariogram model
SDM 0.992
SDAI1 0.940 0.929
SDAI2 0.955 0.954 0.994
SDGI1 0.989 0.983 0.970 0.983
SDGI2 0.983 0.996 0.941 0.967 0.986
J1 (or MCD) 0.436 0.510 0.362 0.411 0.388 0.386
J2 0.435 0.508 0.361 0.410 0.510 0.509 0.999
SPD 0.416 0.341 0.642 0.572 0.496 0.364 -0.327 -0.328
$ 0.416 0.341 0.642 0.572 0.496 0.364 -0.327 -0.328 1.000
£ 0.388 0.318 0.615 0.553 0.478 0.344 -0.369 -0.371 0.989
# 0.925 0.963 0.845 0.887 0.908 0.963 0.696 0.695 0.133
I Moran 0.880 0.838 0.840 0.838 0.893 0.827 -0.024 -0.026 0.598
MSE -0.825 -0.774 -0.796 -0.787 -0.845 -0.767 0.129 0.131 -0.634
KV -0.864 -0.816 -0.817 -0.813 -0.989 -0.803 0.058 0.060 -0.595
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In addition, this component presents moderate positive correlations with J1 (or MCD) 
and J2 in the spherical model and weak positive correlations in the exponential and 
Gaussian models. Santos et al. (2018) also observed strong and positive correlations 
of the component min

{
1; a
0.5 MD

}
 with the SDI, and negative correlations (weak or 

moderate) with the SPD.

Component 
(

C1
C0 + C1

)
 has a correlation equal to 1 with the SPD. In addition, it has a 

moderate positive correlation with the SDI in the Gaussian and spherical models and 
a weak positive correlation in the exponential model. In Santos et al. (2018), weak to 
moderate correlations were also observed between the SDI and the component 

(
C1

C0 + C1

)
.  

In Padilha et al. (2024), there was a strong positive correlation in the spherical model 
and a moderate positive correlation in the exponential and Gaussian models between 
the SDI and the SPD (or 

(
C1

C0 + C1

)
).

Component 
(

C1
C0 + C1

)
 presents weak positive correlations with the SDM and SDGI2 for 

the three models and moderate positive correlations with the SDAI1, SDAI2, and SDGI1. 
Padilha et al. (2024) observed a moderate positive correlation between the SDM and 
the SPD (or 

(
C1

C0 + C1

)
) in the spherical and exponential models, and a weak correlation 

in the Gaussian model.

Furthermore, the component 
(

C1
C0 + C1

)
 presents moderate negative correlations with J1 

(or MCD) and J2 in the exponential model, and weak negative correlations in the Gaussian 
and spherical models.

Component 
2

√(
C1

C0 + C1

)
 has a moderate positive correlation with the SDI in the Gaussian 

model and weak positive correlations in the exponential and spherical models. The 
component has a moderate positive correlation with the SDGI1 in the Gaussian and 
spherical models, and a weak positive correlation in the exponential model. Furthermore, 
this component presents weak positive correlations with SDM and SDGI2, a strong 
positive correlation with SPD, and moderate positive correlations with SDAI1 and SDAI2 
in all three models.

Finally, it is verified that the component 
2

√(
C1

C0 + C1

)
 presents moderate negative correlations 

with J1 (or MCD) and J2 in the exponential model and weak negative correlations in the 
Gaussian and spherical models.

In theory, spatial dependence metrics are expected to have good correlations with all 
components to capture the variability in the vertical and horizontal directions of the 
semivariogram. Thus, SDAI1 and SDAI2 measures tend to have better results when 
compared to SDI, SDM, SDGI1, SDGI2, SPD, J1 (or MCD), and J2, in this regard.

It should be noted that SDAI1, SDAI2, SDGI1, and SDGI2 are direct metrics (by arithmetic 
mean and geometric mean) and dimensionless, dependent only on elements inherent to 
the semivariogram and the sampling grid. The SDI and SDM measures also depend on 
model factors and require classification of the spatial dependence exclusive to each model 
(Seidel and Oliveira, 2016; Barbosa et al., 2017; Appel Neto et al., 2018, 2020; Uribe-
Opazo et al., 2023). The J1 (or MCD) and J2 measures also depend on the model factors 
and are given in the range measurement unit (Russo and Jury, 1987; Han et al., 1994). 
In addition, the SPD measure considers only a vertical component of the semivariogram 
(Biondi et al., 1994), not considering any horizontal component.

A ranking of the metrics (based on our results and literature findings), in order of 
performance, is: 1st - SDAI1 and/or SDAI2; 2nd - SDGI1; 3rd - SDGI2 and/or SDI and/or 
SDM; 4th - SPD; 5th - J1 (MCD) and/or J2.

However, it would not be problematic to use all metrics together, as they all aim to 
quantify spatial variability. Furthermore, the SDAI1, SDAI2, SDGI1, SDGI2, SDI and SDM 
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proposals are attempts to improve the quantification of spatial variability originally done 
by SPD (or RNE).

Because the semivariogram is very informative, metrics are needed to quickly describe, 
through a number, the magnitude of spatial dependence (Seidel and Oliveria, 2014). These 
measures allow the comparison of different situations or scenarios of spatial dependence 
(Biondi et al., 1994; Appel Neto et al., 2020). Thus, the quantification of variability within 
the field can be understood as essential in the current context of precision agriculture.

Below is the metrics(data, obj) function for calculating the SDAI1, SDAI2, SDGI1, and 
SDGI2 measurements and obtaining the respective spatial dependence classifications. 
The metrics() function has the commands data and obj. The command data receives the 
result of applying the function read.geodata(), and the command obj receives the result 
of applying the variofit() function from the geoR package (Ribeiro Junior et al., 2020).

############################################
##########################
# Function:
metrics <- function(data, obj) {
# VC (Vertical component) and HC (Horizontal component)
VC <- obj$cov.pars[1]/(obj$nugget+obj$cov.pars[1])
HC <- min(1,(obj$practicalRange/(0.5*summary(data)[[3]][[2]])))
# SDAI1 and SDAI2
SDAI1 <- ((VC+HC)/2)*100
SDAI2 <- ((sqrt(VC)+HC)/2)*100
# SDGI1 and SDGI2
SDGI1 <- sqrt(VC*HC)*100
SDGI2 <- sqrt(sqrt(VC)*HC)*100
# classifications
cat("\nMetrics:\n")  
cat("\nSDAI1(%) =\n", SDAI1, "\n")
if (SDAI1<38) {
cat("classification: Weak spatial dependence\n")
} else if (SDAI1>=38 && SDAI1<68) {
cat("classification: Moderate spatial dependence\n")
} else {
cat("classification: Strong spatial dependence\n")}
cat("\nSDAI2(%) =\n", SDAI2, "\n")
if (SDAI2<48) {
cat("classification: Weak spatial dependence\n")
} else if (SDAI2>=48 && SDAI2<75) {
cat("classification: Moderate spatial dependence\n")
} else {
cat("classification: Strong spatial dependence\n")}
cat("\nSDGI1(%) =\n", SDGI1, "\n")
if (SDGI1<30) {
cat("classification: Weak spatial dependence\n")
} else if (SDGI1>=30 && SDGI1<64) {
cat("classification: Moderate spatial dependence\n")
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} else {
cat("classification: Strong spatial dependence\n")}
cat("\nSDGI2(%) =\n", SDGI2, "\n")
if (SDGI2<40) {
cat("classification: Weak spatial dependence\n")
} else if (SDGI2>=40 && SDGI2<73) {
cat("classification: Moderate spatial dependence\n")
} else {
cat("classification: Strong spatial dependence\n")}
}
#
metrics(data, obj)
############################################

Finally, we exemplify the application of the metrics function to the soilmoisture and NVDI 
data from the geotoolsR package (Rossoni and Felix, 2020). For both soilmoisture and 
NVDI there is moderate spatial dependence based on the classification and calculation 
of the metrics SDAI1, SDAI2, SDGI1, and SDGI2 (Table 3).

CONCLUSIONS
This study proposed and validated new metrics to measure spatial dependence, based 
on two distinct approaches: an additive formulation using the arithmetic mean of the 
vertical and horizontal components of the semivariogram; and a multiplicative formulation 
using the geometric mean. In addition, a classification for spatial dependence was 
proposed. Finally, a function in R was developed to calculate the metrics and classify 
spatial dependence.

The proposed metrics effectively describe spatial dependence. However, the metrics 
based on the additive formulation, called spatial dependence arithmetic index 1 and 
spatial dependence arithmetic index 2, stood out for their strong correlations with 
performance measures and for capturing more effectively the vertical and horizontal 
behaviors of the semivariogram.

Thus, faced with the challenge of summarizing all the graphical information of the 
semivariogram in a single number, thus allowing the classification and comparison of 
spatial dependencies, we believe that this study represents a significant advance in the 
approach to this topic.

Table 3. Applying the metrics function to soilmoisture and NVDI data sets

Data Partial sill Sill Range MD

soilmoisture 1.62 4.12 78.83 401.62

NVDI 0.0036 0.0065 7.45 24.19

Data SDAI1 SDAI2 SDGI1 SDGI2

soilmoisture 39.30 (Moderate) 50.99 (Moderate) 39.30 (Moderate) 49.62 (Moderate)

NVDI 58.59 (Moderate) 68.09 (Moderate) 58.51 (Moderate) 67.78 (Moderate)
MD: maximum distance; SDAI1: spatial dependence arithmetic index 1; SDAI2: spatial dependence arithmetic 
index 2; SDGI1: spatial dependence geometric index 1; SDGI2: spatial dependence geometric index 2.



Seidel and Oliveira. Proposal and validation of geostatistical-based metrics to quantify within-field variability

12Rev Bras Cienc Solo 2025;49:e0250042

DATA AVAILABILITY
The data will be provided upon request.

AUTHOR CONTRIBUTIONS
Conceptualization:  Enio Júnior Seidel (equal) and  Marcelo Silva de Oliveira 
(equal).

Formal analysis:  Enio Júnior Seidel (lead).

Methodology:  Enio Júnior Seidel (lead).

Software:  Enio Júnior Seidel (lead).

Writing – original draft:  Enio Júnior Seidel (equal) and  Marcelo Silva de Oliveira 
(equal).

Writing – review & editing:  Enio Júnior Seidel (equal) and  Marcelo Silva de 
Oliveira (equal).

REFERENCES
Amaral LR, Della Justina DD. Spatial dependence degree and sampling neighborhood influence 
on interpolation process for fertilizer prescription maps. Eng Agric. 2019;39:85-95.  
https://doi.org/10.1590/1809-4430-Eng.Agric.v39nep85-95/2019

Appel Neto E, Barbosa IC, Seidel EJ, Oliveira MS. Spatial dependence index for cubic, 
pentaspherical and wave semivariogram models. Bol Cienc Geod. 2018;24:142-51.  
https://doi.org/10.1590/S1982-21702018000100010

Appel Neto E, Seidel EJ, Oliveira MS. Geostatistical-based index for spatial variability in soil 
properties. Rev Bras Cienc Solo. 2020;44:e0200086.  
https://doi.org/10.36783/18069657rbcs20200086

Barbosa IC, Appel E, Seidel EJ, Oliveira MS. Proposal of the spatial dependence evaluation from 
the power semivariogram model. Bol Cienc Geod. 2017;23:461-75.  
https://doi.org/10.1590/S1982-21702017000200031

Biondi F, Myers DE, Avery CC. Geostatistically modeling stem size and incremente in an old-
growth forest. Can J Forest Res. 1994;24:1354-68. https://doi.org/10.1139/x94-176

Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE. Field-scale 
variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 1994;58:1501-11.  
https://doi.org/10.2136/sssaj1994.03615995005800050033x

Fu W, Zhao K, Zhang C, Tunney H. Using Moran's I and geostatistics to identify spatial patterns 
of soil nutrients in two different long-term phosphorus-application plots. J Plant Nutr Soil Sc. 
2011;174:785-98. https://doi.org/10.1002/jpln.201000422

Geary RC. The contiguity ratio and statistical mapping. J Roy Stat Soc D-Sta. 1954;5:115-41. 
https://doi.org/10.2307/2986645

Han S, Hummel JW, Goering CE, Cahn MD. Cell size selection for site-specific crop management. 
Trans Amer Soc Agr Eng. 1994;37:19-26. https://doi.org/10.13031/2013.28048

Herrero-Langreo A, Gorretta N, Tisseyre B, Gowen A, Xu JL, Chaix G, Roger JM. Using spatial 
information for evaluating the quality of prediction maps from hyperspectral images: A 
geostatistical approach. Anal Chim Acta. 2019;1077:116-28.  
https://doi.org/10.1016/j.aca.2019.05.067

Jang G, Kim D-W, Kim H-J, Chung YS. Short communication: Spatial dependence analysis as a 
tool to detect the hidden heterogeneity in a kenaf field. Agronomy. 2023;13:428.  
https://doi.org/10.3390/agronomy13020428

https://orcid.org/0000-0002-9656-0699
https://orcid.org/0000-0003-3127-7195
https://orcid.org/0000-0002-9656-0699
https://orcid.org/0000-0002-9656-0699
https://orcid.org/0000-0002-9656-0699
https://orcid.org/0000-0002-9656-0699
https://orcid.org/0000-0003-3127-7195
https://orcid.org/0000-0002-9656-0699
https://orcid.org/0000-0003-3127-7195


Seidel and Oliveira. Proposal and validation of geostatistical-based metrics to quantify within-field variability

13Rev Bras Cienc Solo 2025;49:e0250042

Journel AG, Huijbregts CJ. Mining geostatistics. Caldwell: Blackburn Press; 2003.

Leroux C, Tisseyre B. How to measure and report within-field variability: a review of common 
indicators and their sensitivity. Precis Agric. 2019;20:562-90.  
https://doi.org/10.1007/s11119-018-9598-x

Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17-23.  
https://doi.org/10.1093/biomet/37.1-2.17

Olea RA. A six-step practical approach to semivariogram modeling. Stoch Env Res Risk A. 
2006;20:307-18. https://doi.org/10.1007/s00477-005-0026-1

Padilha LC, Pazini JB, Seidel EJ. Relationship between some geostatistical-based measures for 
agricultural attributes. Rev Cienc Agrovet. 2024;23:782-7.  
https://doi.org/10.5965/223811712342024782

R Development Core Team. R: A language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing; 2021. Available from: http://www.R-project.org/.

Ribeiro Junior PJ, Diggle PJ, Schlather M, Bivand R, Ripley B. geoR: Analysis of Geostatistical 
Data. R package version 1.8-1. CRAN: Package geoR; 2020. Available from: https://CRAN.R-
project.org/package=geoR.

Rodrigues MS, Castrignanò A, Belmonte A, Silva KA, Lessa BFT. Geostatistics and its potential in 
Agriculture 4.0. Rev Cienc Agron. 2020;51:e20207691.  
https://doi.org/10.5935/1806-6690.20200095

Rossoni DF, Felix VB. geotoolsR: Tools to Improve the use of Geostatistic. R package version 1.1. 
CRAN: Package geotoolsR; 2020. Available from: https://CRAN.R-project.org/package=geotoolsR

Russo D, Jury W. A theoretical study of the estimation of the correlation scale in spatially 
variable fields: 1. Stationary fields. Water Resour Res. 1987;23:1257-68.  
https://doi.org/10.1029/WR023i007p01257

Sandonís-Pozo L, Llorens J, Escolà A, Arnó J, Pascual M, Martínez-Casasnovas JA. Satellite 
multispectral indices to estimate canopy parameters and within-field management zones in 
super-intensive almond orchards. Precis Agric. 2022;23:2040-62.  
https://doi.org/10.1007/s11119-022-09956-6

Santos ELE, Seidel EJ, Pazini JB, Oliveira MS, Appel Neto E, Barbosa IC. Some aspects about the 
spatial dependence index for variability of soil attributes. Cienc Rural. 2018;48:e20170710. 
https://doi.org/10.1590/0103-8478cr20170710

Seidel EJ, Oliveira MS. Descrição da dependência espacial em Geoestatística através da 
construção de dois índices. In: Anais da 57ª Reunião Anual da Região Brasileira da Sociedade 
Internacional de Biometria; 2012; Piracicaba. RBRAS; 2012.

Seidel EJ, Oliveira MS. Novo índice geoestatístico para a mensuração da dependência espacial. 
Rev Bras Cienc Solo. 2014;38:699-705. https://doi.org/10.1590/S0100-06832014000300002

Seidel EJ, Oliveira MS. A classification for a geostatistical index of spatial dependence. Rev Bras 
Cienc Solo. 2016;40:e0160007. https://doi.org/10.1590/18069657rbcs20160007

Taylor JA, Praat JP, Bollen AF. Spatial variability of kiwifruit quality in orchards and its 
implications for sampling and mapping. HortScience. 2007;42:246-50.  
https://doi.org/10.21273/HORTSCI.42.2.246

Uribe-Opazo MA, Dalposso GH, Galea M, Johann GA, Bastiani F, Moyano ENC, Grzegozewski 
DM. Spatial variability of wheat yield using the gaussian spatial linear model. Aust J Crop Sci. 
2023;17:179-89. https://doi.org/10.21475/ajcs.23.17.02.p3742

Zhao M, Guerrero A, Munnaf MA, Lauwers L, Mouazen AM. Within-field spatial variability and 
potential for profitability of variable rate applications. Precis Agric. 2023;24:2248-63.  
https://doi.org/10.1007/s11119-023-10039-3


