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ABSTRACT: Metrics are fundamental to quantify and classify the spatial dependence of
soil and agricultural attributes. This study aimed to propose and validate metrics based on
two distinct approaches, one additive, which considers the arithmetic mean of the vertical
and horizontal components, and the other multiplicative, which considers the geometric
mean of the vertical and horizontal components of the semivariogram. Furthermore, we
intend to propose the classification of spatial dependence based on the categorization
of these metrics. Finally, a function in R language is presented to calculate the metrics
and classify spatial dependence. The spatial dependence arithmetic index 1 (SDAI1) and
spatial dependence arithmetic index 2 (SDAI2) are constructed in a dimensionless way,
in the range between 0 and 100 %, considering the sum (arithmetic mean) between
the vertical and horizontal components of the semivariogram. The spatial dependence
geometric index 1 (SDGI1) and the spatial dependence geometric index 2 (SDGI2) are
constructed in a dimensionless way, in the range between 0 and 100 %, considering
the multiplication (geometric mean) between the vertical and horizontal components
of the semivariogram. The SDAIL, SDAI2, SDGI1, and SDGI2 metrics are compared with
other metrics existing in the literature, such as the spatial dependence degree (SPD), the
integral scales J1 and ]2, the mean correlation distance (MCD), the spatial dependence
index (SDI), and the spatial dependence measure (SDM). For different spatial dependence
scenarios, correlations are calculated between the geostatistical-based metrics and
the performance measures Moran’s |, mean squared error (MSE), and kriging variance
(KV). The metrics perform well in describing spatial dependence, with the exception of
J1 (or MCD) and J2. However, the SDAI1, SDAI2, and SDGI1 metrics have slightly better
correlations with the Moran’s I, MSE, and KV measures, when compared to the SDI,
SDM, SDGI2, and SPD metrics. Furthermore, the SDAI1 and SDAI2 metrics show superior
performance in capturing the vertical and horizontal effects of the semivariogram.
Finally, a function in R language was developed to calculate the metrics and classify
spatial dependence.
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INTRODUCTION

Geostatistics is widely applied in agricultural sciences to predict and map soil and
agricultural attributes, and is essential in the context of Agriculture 4.0 (Rodrigues et al.,
2020). At the heart of the use of Geostatistics is spatial dependence, which conceptually
is characterized by the way in which geospatial locations correlate.

Quantification of spatial dependence is generally performed using metrics derived from
semivariogram parameters (Padilha et al., 2024) or by measures of spatial autocorrelation,
such as Moran’s | (Moran, 1950) or Geary’s C (Geary, 1954). Among the metrics derived
from the semivariogram, the following stand out: the relative nugget effect (RNE),
presented in Cambardella et al. (1994), the integral scales J1 and J2, presented in Russo
and Jury (1987), the mean correlation distance (MCD), given in Han et al. (1994), the
spatial dependence degree (SPD), presented in Biondi et al. (1994), the spatial dependence
index (SDI), proposed by Seidel and Oliveira (2014), and the spatial dependence measure
(SDM), proposed by Appel Neto et al. (2020). Spatial dependence metrics play a prominent
role for two main purposes: (I) they allow the early assessment of the quality of kriging
predictions, since the stronger the spatial dependence, the more accurate the kriging
prediction; (ll) they allow the comparison of the spatial variability observed in different
attributes in different fields.

Among the semivariogram parameters, the range parameter (a) describes the spatial
variability in the horizontal direction of the graph, while the nugget effect (C,), partial sill
(C,), and sill (C) describe the spatial variability in the vertical direction of the semivariogram
(Santos et al., 2018). Seidel and Oliveira (2012) presented a measure called the combined
spatial dependence index (CSDI), composed of a component that captures the variability
in the vertical direction of the semivariogram (VSDI) and a component that captures the
variability in the horizontal direction of the semivariogram (HSDI). The VSDI considers
the relationship between the C, and the C in the same way as the index of Biondi et
al. (1994). The HSDI considers the relationship between the a and half of the greatest
distance between sampled points ( 0.5 MD). The combination of vertical and horizontal
parameters of the semivariogram is also present in a multiplicative form in the J1 and
J2 (Russo and Jury, 1987), MCD (Han et al., 1994), SDI (Seidel and Oliveira, 2014; Appel
Neto et al., 2018; Uribe-Opazo et al., 2023), SDM (Appel Neto et al., 2020), and adapted
RNE (Zhao et al., 2023) measures.

Assessing spatial variability within the field is a concern for many researchers (Cambardella
et al., 1994; Taylor et al., 2007; Herrero-Langreo et al., 2019; Leroux and Tisseyre,
2019; Sandonis-Pozo et al., 2022; Jang et al., 2023; Zhao et al., 2023), as there may be
heterogeneities in field factors that directly influence agricultural productivity (Leroux and
Tisseyre, 2019) and production profitability (Zhao et al., 2023). Thus, the construction
and comparison of different metrics for quantifying spatial dependence, derived from
the semivariogram, are important.

This study aimed to propose and validate metrics based on two distinct approaches:
an additive one, which considers the arithmetic mean of the vertical and horizontal
vertical component + horizontal component

components (metric = ), and a multiplicative one,
which considers the geometric mean of the vertical and horizontal components of the
semivariogram (metric = {/vertical component x horizontal component). Furthermore, we
intend to propose the classification of spatial dependence based on the categorization
of such metrics. Finally, a function in R language is presented to calculate the metrics
and classify spatial dependence.
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MATERIALS AND METHODS

Vertical components describe the spatial variability in the vertical direction of the
semivariogram, being given in the interval from zero are given by equations 1 and 2,
respectively.

G
VC, = Eg. 1
1 <C0—|—C1> g
and
C
VC, = ¢ Eq. 2
2 <C0+C1> a

in which: C, is the nugget effect and C, is the partial sill.

The horizontal component HC is given by equation 3.

HC = min{ Eq. 3

a
L 0.5 MD}
in which: a is the range; MD is the maximum distance between points on the sampling
grid; and min{*} is the minimum function.

The HC describes the spatial variability in the horizontal direction of the semivariogram,
being given in the interval from zero to one, that is, applying the min{*} function ensures
that this component assumes values only in the interval [0, 1]. The 0.5 MD factor is
based on practical recommendations for using pairs of locations up to half of the largest
sampling distance to estimate semivariances (Journel and Huijbregts, 2003; Olea, 2006).
The construction of the metrics is based on the simple arithmetic mean (equation 4) and
the simple geometric mean (equation 5).

)_(a:w Eq. 4

Xy = \/VC* HC! Eq. 5

in which: VC; is the i-th vertical component, i=1,2; and HC is the horizontal component.

Spatial dependence arithmetic index 1 (SDAI1) and the spatial dependence arithmetic
index 2 (SDAI2) are constructed in a dimensionless way, in the interval between 0 and
100 %, considering the arithmetic mean between the vertical and horizontal components
of the semivariogram.

The SDAI1 is given by equation 6.

o) + (min {1; 5 )

5 x 100 Eq. 6

SDAI1 (%) = (
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in which: C, is the nugget effect; C, is the partial sill; a is the range; MD is the maximum
distance between points on the sampling grid; and min{*} is the minimum function.

c ) .
0< C0+1C1> <1.0< m|n{1~ a } < 1. The SDAI1 was originally presented as CSDI by

0.5 MD
Seidel and Oliveira (2012).

The SDAI2 is given by equation 7.

o/ (S ) + (min {1: g5%p })
SDAI2 (%) = 5 x 100 Eq. 7

in which: C, is the nugget effect; C, is the partial sill; a is the range; and MD is the
maximum distance between points on the sampling grid; and min{*} is the minimum

. ) C . : . a
funct|on.0g,/<co+c1 <1 0<ming Lo e < 1.

Spatial dependence geometric index 1 (SDGI1) and the spatial dependence geometric
index 2 (SDGI2) are constructed in a dimensionless way, in the interval between 0 and
100 %, considering the geometric mean between the vertical and horizontal components
of the semivariogram.

The SDGI1 is given by equation 8.

SDGI1 (%) = \z/(c(ﬁ:q) (min {1; 05%}) x 100 Eq. 8

in which: C, is the nugget effect; C, is the partial sill; a is the range; MD is the maximum
distance between points on the sampling grid; and min{*} is the minimum function:

C - 0<mind1. 2 <
OS(CHCI)Sl'ofm'”{l’o.smo}*l'

The SDGI2 is given by equation 9.

SDGI2 (%) :il : (Coilq) (min{l;ﬁ}) » 100 Eq. 9

in which: C, is the nugget effect; C, is the partial sill; a is the range; MD is the maximum
distance between points on the sampling grid; and min{*} is the minimum function.

C, . a
<@ <1. P .
0‘\/ <C0+C1>_ Ogmln{l’O.SMD}Sl

To carry out the classification of the SDAI1, SDAI2, SDGI1, and SDGI2, a methodology

adapted from Seidel and Oliveira (2016), Appel Neto et al. (2018), and Appel Neto et al.
C
(2020) was used. Values were generated for the components (C()Tlcl) or { (c(,f:q) and

min {1; 05%}, from 0.05 to 1.00, varying by 0.05. Subsequently, these values were

combined by arithmetic means for SDAI1 and SDAI2, and by geometric means for SDGI1
and SDGI2, which generated a vector of 400 values that was increased by a zero value.
The first and the third quartiles of the vector were considered as cut-offs to categorize
the metrics, and classify the spatial dependence as weak, moderate, and strong.

The SDAI2 and SDGI2 metrics are constructed to give greater value to the vertical
component of the semivariogram because it is given by the square root of values in the
interval [0, 1], in the same way as performed in J2 (Russo and Jury, 1987) and in SDM

(Appel Neto et al., 2020). Equation 10 shows the result for ¢ < (C ilC <1.
0 1
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2 C1 _ C1 B C1 _ C1 _
(C0+C1) - <C0+C1>’ if (C0+C1) =0 or <C0+C1) =1,

2 (Cgilcl) > (ﬁ), if0 < (coilcl) <1. Eq. 10

in which: C, is the nugget effect; and C; is the partial sill.

In addition to proposing the measures SDAI1, SDAI2, SDGI1, and SDGI2 and their respective
classifications of spatial dependence, the SDI, SDM, SPD, and MCD, and the integral
scales J1 and )2 are also evaluated. It follows that MCD and J1 are identical, that is, MCD
is the closed form of the integral scale J1. Furthermore, it is decided to use the SPD and
not the RNE, because SPD(%) = 100 - RNE(%).

To evaluate the performance of the metrics, the associations with their components,
and compare them with some of the indices used in the literature, scenarios of spatial
variability (considering weak to strong spatial dependence) were simulated in the geoR
package (Ribeiro Junior et al., 2020), from R software (R Development Core Team, 2021)
in the same way as in Appel Neto et al. (2020). The scenarios were composed with the
following parameters: C, values of 10, 25, 50, 75, and 90 % of C = 50; a values of 10, 25,
50, 75, and 90 % of 0.5 MD = 70.71 m, in a random field with mean equal to zero, with
n =169, ina 100 x 100 m regular sampling grid, totaling 25 scenarios for each of the
exponential, Gaussian and spherical models. Each scenario was replicated 100 times to
mitigate possible variations in the simulation algorithm. With the 100 values generated
from each scenario, the means of the metrics and, as performance measures, the means
of the Moran's |, mean squared error (MSE), and kriging variance (KV) generated by
cross-validation were calculated. Finally, Pearson correlation between the metrics and
performance measures was calculated.

In addition, a function in R is presented to calculate the metrics and classify spatial
dependence. Finally, to exemplify the application of the metrics in the proposal for data
classification, the soilmoisture and the NVDI data sets from the geotoolsR package
(Rossoni and Felix, 2020) were used.

RESULTS AND DISCUSSION

The simulations of the values of SDAIL, SDAI2, SDGI1, and SDGI2 show statistically
symmetric behaviors (Figure 1), with skewness coefficients of -0.02 (p = 0.8510), -0.17
(p=0.1688), 0.23 (p = 0.0628), and -0.08 (p = 0.4990), respectively. The fact that there is
symmetry in the metric distributions allows the classification of spatial dependence based
on the first and third quartiles, since symmetry gives both sides of the distribution the
same frequency (probabilistic) weight. The proposed classification of spatial dependence
for the metrics SDAIL, SDAI2, SDGI1, and SDGI2 is presented in table 1. For categorization,
the quartile values were rounded to integer values. Cambardella et al. (1994) also used
quartiles (1st quartile = 25 %; 3rd quartile = 75 %) in the RNE categorization cut-offs to
generate three classes (weak; moderate; strong) of spatial dependence. Similarly, Barbosa
etal. (2017) used quartiles (1st quartile = 25 %; 3rd quartile = 75 %) in the categorization
cut-offs in the proposal of a measure equivalent to the SPD, in the power semivariogram
model, to generate three classes (weak; moderate; strong) of spatial dependence.

Table 2 presents the correlations between the spatial dependence measures (SDI, SDM,
SDAI1, SDAI2, SDGI1, and SDGI2) and the performance measures (Moran's I, MSE, and
KV). We see that the SDI and SDM measures present strong negative correlations with
MSE and KV in the Gaussian and spherical models. In the exponential model, SDI and
SDM are strongly negatively correlated with KV and moderately negatively correlated
with MSE. Furthermore, SDI and SDM are strongly positively correlated with Moran's
| in the Gaussian and spherical models, and moderately positively correlated in the
exponential model.

Rev Bras Cienc Solo 2025;49:e0250042 )
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(a)

Frequency

0 20 40 60 80 100 0 20 40 60 80 100
SDAI1 SDAIL

* Minimum = 0.00; First quartile = 37.50; Median = 52.50; Third quartile = 67.50; Maximum = 100.00; Mean = 52.37;
Standard deviation = 20.55; Skewness coefficient = -0.02; D'Agostino test for skewness (p = 0.8510).

Frequency
4
s

0 20 40 60 80 100 0 20 40 60 80 100

SDAI2 SDAI2

* Minimum = 0.00; First quartile = 47.81; Median = 60.80; Third quartile = 74.58; Maximum = 100.00; Mean = 60.57;
Standard deviation = 18.47; Skewness coefficient = -0.17; D'Agostino test for skewness (p = 0.1688).

(c)

Frequency
3
s

T
0 20 40 60 80 100 0 20 40 60 80 100
SDGI1 SDGI1

*Minimum = 0.00; First quartile = 29.58; Median = 45.83; Third quartile = 64.23; Maximum = 100.00; Mean = 52.37;
Standard deviation = 22.42; Skewness coefficient = 0.23; D'Agostino test for skewness (p = 0.0628).

(d)

Frequency

d T
0 20 40 60 80 100 0 20 40 60 80 100
SDGI2 SDGI2

* Minimum = 0.00; First quartile = 39.76; Median = 56.79; Third quartile = 72.97; Maximum = 100.00; Mean = 56.22;
Standard deviation = 21.24; Skewness coefficient = -0.08; D'Agostino test for skewness (p = 0.4990).

Figure 1. Simulated behavior (Histogram and Boxplot) of Spatial dependence arithmetic index
1 (SDAI1) (a), Spatial dependence arithmetic index 2 (SDAI2) (b), Spatial dependence geometric
index 1 (SDGI1) (c), and Spatial dependence geometric index 2 (SDGI2) (d).
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Table 1. Proposed classification of spatial dependence for the metrics Spatial dependence
arithmetic index 1 (SDAI1), Spatial dependence arithmetic index 2 (SDAI2), Spatial dependence
geometric index 1 (SDGI1), and Spatial dependence geometric index 2 (SDGI2)

Classification

Metric

Weak Moderate Strong
SDAI1 0to 38 38 to 68 68 to 100
SDAI2 0to 48 48 to 75 75 to 100
SDGI1 0to 30 30 to 64 64 to 100
SDGI2 0 to 40 40 to 73 73 to 100

Seidel and Oliveira (2014) observed an excellent relationship between the SDI and MSE in
the spherical and Gaussian models, and a good relationship between the SPD and the MSE
for the exponential model. Appel Neto et al. (2020) observed strong negative correlations
between the SDI and SDM indices and the MSE and KV performance measures for the
spherical, exponential, Gaussian, and cubic models, and strong negative correlations
between the SPD and the MSE and KV performance measures in the exponential, Gaussian,
and wave models.

The SDAI1 and SDAI2 measures present strong negative correlations with MSE and KV
and strong positive correlations with Moran's | in all three models. The SDGI1 measure
has strong negative correlations with MSE and KV, and a strong positive correlation with
Moran's | in all three models. The SDGI2 measure shows a strong negative correlation with
the MSE in the Gaussian and spherical models, and a moderate negative correlation in
the exponential model. In addition, the SDGI2 measure has a strong negative correlation
with the KV and a strong positive correlation with Moran's | in all three models.

The J1 (or MCD) and J2 measures show weak positive correlations with MSE and KV and
weak negative correlations with Moran's | in all three models. The SPD shows strong
negative correlations with MSE and KV for the Gaussian model, and moderate negative
correlations in the exponential and spherical models. Furthermore, the SPD presents a
moderate positive correlation with Moran's | in all three models. Fu et al. (2011) observed
a strong correlation ( R? = 0.8578) between the RNE and Moran’s | (or strong correlation
between SPD and Moran’s I).

In theory, it is expected that higher values of spatial dependence should be related to
lower values of MSE and KV and higher values of Moran's I. Thus, the measures SDAIL,
SDAI2, and SDGI1 tend to present slightly better results when compared to SDI and
SDM, SDGI2, SPD, J1 (or MCD), and )2, in this aspect. These relevant metrics correlations
for models corroborate the perception that metrics that summarize the entire spatial
dependency structure in a single number are possible.

Spatial dependence metrics are associated with cross-validation performance measures,
and according to Appel Neto et al. (2018), spatial dependence metrics can indicate
the quality of kriging prediction maps. However, Amaral and Della Justina (2019), in a
study with soil samples from sugarcane fields, observed that the SPD, SDI, and Moran’s
| metrics presented limitations when trying to assess the accuracy of predictions by
interpolation. Even considering these limitations, the search for an metric that allows the
classification of the spatial variability structure present in a phenomenon is of notorious
importance, since only with the use of a single number (the calculated value of the
metric) is it possible to compare and hierarchize spatial phenomena, and, therefore, to
recommend the appropriate management of different phenomena, especially when a
trade-off decision regarding the application of resources needs to be made.

. a
The component min {1; W} presents strong positive correlations with SDI, SDM,
SDAI1, SDAI2, SDGI1, and SDGI2, and a weak correlation with SPD in the three models.

Rev Bras Cienc Solo 2025;49:e0250042 7



Seidel and Oliveira. Proposal and validation of geostatistical-based metrics to quantify within-field variability

’r-
‘
Y\

Table 2. Pearson correlation between spatial dependence index (SDI), spatial dependence measure (SDM), spatial dependence
arithmetic index 1 (SDAI1), spatial dependence arithmetic index 2 (SDAI2), spatial dependence geometric index 1 (SDGI1), spatial
dependence geometric index 2 (SDGI2), integral scales J1 and ]2, mean correlation distance (MCD), spatial dependence degree

(SPD), component (ﬁ) ($), component z/(c C+1C ) (£), component min{l; } (#), and Moran’s |, Mean square error (MSE),
and Kriging variance (KV). Simulated data ’

X SDI SDM SDAIl SDAI2 SDGI1 SDGI2 )1 (or MCD) J2 SPD
Exponential semivariogram model

_a
0.5 MD

SDM 0.985

SDAI1 0.906 0.923

SDAI2 0.909 0.942 0.992

SDGI1 0.966 0.987 0.963 0.976

SDGI2 0.945 0.984 0.943 0.969 0.991

J1 (or MCD) 0.257 0.217 0.004 0.015 0.095 0.126

]2 0.257 0.217 0.003 0.015 0.095 0.126 0.999

SPD 0.332 0.288 0.603 0.525 0.407 0.318 -0.444 -0.444

$ 0.332 0.288 0.603 0.525 0.407 0.318 -0.444 -0.444 1.000

£ 0.261 0.239 0.564 0.503 0.371 0.291 -0.541 -0.541 0.980

# 0.921 0.969 0.870 0.908 0.945 0.975 0.279 0.279 0.131

| Moran 0.681 0.698 0.793 0.796 0.781 0.732 -0.379 -0.379 0.654

MSE -0.672 -0.673 -0.770 -0.764 -0.754 -0.694 0.377 0.378 -0.683

KV -0.709 -0.707 -0.789 -0.784 -0.780 -0.720 0.336 0.336 -0.667
Gaussian semivariogram model

SDM 0.982

SDAI1 0.942 0.938

SDAI2 0.946 0.961 0.992

SDGI1 0.985 0.986 0.968 0.979

SDGI2 0.958 0.992 0.940 0.970 0.981

J1 (or MCD) 0.016 0.089 0.014 0.049 0.013 0.112

J2 0.016 0.091 0.015 0.050 0.015 0.114 0.999

SPD 0.474 0.358 0.619 0.529 0.495 0.341 -0.359 -0.361

$ 0.474 0.358 0.619 0.529 0.495 0.341 -0.359 -0.361 1.000

£ 0.437 0.329 0.588 0.508 0.472 0.320 -0.397 -0.399 0.989

# 0.864 0.939 0.837 0.889 0.883 0.954 0.268 0.270 0.087

| Moran 0.908 0.849 0.873 0.857 0.911 0.825 -0.193 -0.193 0.684

MSE -0.838 -0.776 -0.822 -0.802 -0.860 -0.765 0.245 0.246 -0.713

KV -0.883 -0.822 -0.856 -0.838 -0.894 -0.804 0.221 0.221 -0.702
Spherical semivariogram model

SDM 0.992

SDAI1 0.940 0.929

SDAI2 0.955 0.954 0.994

SDGI1 0.989 0.983 0.970 0.983

SDGI2 0.983 0.996 0.941 0.967 0.986

J1 (or MCD) 0.436 0.510 0.362 0.411 0.388 0.386

J2 0.435 0.508 0.361 0.410 0.510 0.509 0.999

SPD 0.416 0.341 0.642 0.572 0.496 0.364 -0.327 -0.328

$ 0.416 0.341 0.642 0.572 0.496 0.364 -0.327 -0.328 1.000

£ 0.388 0.318 0.615 0.553 0.478 0.344 -0.369 -0.371 0.989

# 0.925 0.963 0.845 0.887 0.908 0.963 0.696 0.695 0.133

| Moran 0.880 0.838 0.840 0.838 0.893 0.827 -0.024 -0.026 0.598

MSE -0.825 -0.774 -0.796 -0.787 -0.845 -0.767 0.129 0.131 -0.634

KV -0.864 -0.816 -0.817 -0.813 -0.989 -0.803 0.058 0.060 -0.595
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In addition, this component presents moderate positive correlations with J1 (or MCD)
and J2 in the spherical model and weak positive correlations in the exponential and
Gaussian models. Santos et al. (2018) also observed strong and positive correlations

of the component min{ } with the SDI, and negative correlations (weak or

moderate) with the SPD.

C1
Component (C0+C1) has a correlation equal to 1 with the SPD. In addition, it has a
moderate positive correlation with the SDI in the Gaussian and spherical models and

a weak positive correlation in the exponential model. In Santos et al. (2018), weCak to
moderate correlations were also observed between the SDI and the component C()Tlcl)
In Padilha et al. (2024), there was a strong positive correlation in the spherical model

and a moderate positive correlation in the exponential and Gaussian models between

the SDI and the SPD (or( G )).
Co+C

a
L 0.5 MD

Component <ﬁ) presents weak positive correlations with the SDM and SDGI2 for
the three models and moderate positive correlations with the SDAI1, SDAI2, and SDGI1.
Padilha et al. (2024) observed a moderate positive correlation between the SDM and
the SPD (or <ﬁ>) in the spherical and exponential models, and a weak correlation
in the Gaussian model.

C
Furthermore, the component (Co +1(;1> presents moderate negative correlations with J1

(or MCD) and )2 in the exponential model, and weak negative correlations in the Gaussian
and spherical models.

C

Component Y (Co T Cl) has a moderate positive correlation with the SDI in the Gaussian
model and weak positive correlations in the exponential and spherical models. The
component has a moderate positive correlation with the SDGI1 in the Gaussian and
spherical models, and a weak positive correlation in the exponential model. Furthermore,
this component presents weak positive correlations with SDM and SDGI2, a strong
positive correlation with SPD, and moderate positive correlations with SDAI1 and SDAI2
in all three models.

2 Cl
Finally, itis verified that the component (co T cl) presents moderate negative correlations
with J1 (or MCD) and J2 in the exponential model and weak negative correlations in the

Gaussian and spherical models.

In theory, spatial dependence metrics are expected to have good correlations with all
components to capture the variability in the vertical and horizontal directions of the
semivariogram. Thus, SDAI1 and SDAI2 measures tend to have better results when
compared to SDI, SDM, SDGI1, SDGI2, SPD, J1 (or MCD), and J2, in this regard.

It should be noted that SDAI1, SDAI2, SDGI1, and SDGI2 are direct metrics (by arithmetic
mean and geometric mean) and dimensionless, dependent only on elements inherent to
the semivariogram and the sampling grid. The SDI and SDM measures also depend on
model factors and require classification of the spatial dependence exclusive to each model
(Seidel and Oliveira, 2016; Barbosa et al., 2017; Appel Neto et al., 2018, 2020; Uribe-
Opazo et al., 2023). The J1 (or MCD) and J2 measures also depend on the model factors
and are given in the range measurement unit (Russo and Jury, 1987; Han et al., 1994).
In addition, the SPD measure considers only a vertical component of the semivariogram
(Biondi et al., 1994), not considering any horizontal component.

A ranking of the metrics (based on our results and literature findings), in order of
performance, is: 1st - SDAI1 and/or SDAI2; 2nd - SDGI1; 3rd - SDGI2 and/or SDI and/or
SDM; 4th - SPD; 5th - J1 (MCD) and/or 2.

However, it would not be problematic to use all metrics together, as they all aim to
guantify spatial variability. Furthermore, the SDAIL, SDAI2, SDGI1, SDGI2, SDI and SDM
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proposals are attempts to improve the quantification of spatial variability originally done
by SPD (or RNE).

Because the semivariogram is very informative, metrics are needed to quickly describe,
through a number, the magnitude of spatial dependence (Seidel and Oliveria, 2014). These
measures allow the comparison of different situations or scenarios of spatial dependence
(Biondi et al., 1994; Appel Neto et al., 2020). Thus, the quantification of variability within
the field can be understood as essential in the current context of precision agriculture.

Below is the metrics(data, obj) function for calculating the SDAI1, SDAI2, SDGI1, and
SDGI2 measurements and obtaining the respective spatial dependence classifications.
The metrics() function has the commands data and obj. The command data receives the
result of applying the function read.geodata(), and the command obj receives the result
of applying the variofit() function from the geoR package (Ribeiro Junior et al., 2020).

HUEHHRAHBHH B R AR AR RHH R R H B R AR R A H B HH B RHHRAHRH#HH
HEHBBAHBAHBHHBHH B R HHHHHHHH

# Function:

metrics <- function(data, obj) {

# VC (Vertical component) and HC (Horizontal component)
VC <- obj$cov.pars[1]/(obj$nugget+obj$cov.pars[1])
HC <- min(1,(obj$practicalRange/(0.5*summary(data)[[3]][[2]])))
# SDAI1 and SDAI2

SDAI1 <- ((VC+HC)/2)*100

SDAI2 <- ((sqrt(VC)+HC)/2)*100

# SDGI1 and SDGI2

SDGI1 <- sqrt(VC*HC)*100

SDGI2 <- sqrt(sqrt(VC)*HC)*100

# classifications

cat("\nMetrics:\n")

cat("\nSDAI1(%) =\n", SDAI1, "\n")

if (SDAI1<38) {

cat("classification: Weak spatial dependence\n")

} else if (SDAI1>=38 && SDAI1<68) {
cat("classification: Moderate spatial dependence\n")
}else {

cat("classification: Strong spatial dependence\n")}
cat("\nSDAI2(%) =\n", SDAI2, "\n")

if (SDAI2<48) {

cat("classification: Weak spatial dependence\n")

} else if (SDAI2>=48 && SDAI2<75) {
cat("classification: Moderate spatial dependence\n")
}else {

cat("classification: Strong spatial dependence\n")}
cat("\nSDGI1(%) =\n", SDGI1, "\n")

if (SDGI1<30) {

cat("classification: Weak spatial dependence\n")

} else if (SDGI1>=30 && SDGI1<64) {
cat("classification: Moderate spatial dependence\n")
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}else {

cat("classification: Strong spatial dependence\n")}
cat("\nSDGI2(%) =\n", SDGI2, "\n")

if (SDGI2<40) {

cat("classification: Weak spatial dependence\n")

} else if (SDGI2>=40 && SDGI2<73) {
cat("classification: Moderate spatial dependence\n")
}else {

cat("classification: Strong spatial dependence\n")}

}
#

metrics(data, obj)
HHUABHBHHBHBHBHBHBHBHHBHBHBHBH SRR B HBHBHBHB RS TS

Finally, we exemplify the application of the metrics function to the soilmoisture and NVDI
data from the geotoolsR package (Rossoni and Felix, 2020). For both soilmoisture and
NVDI there is moderate spatial dependence based on the classification and calculation
of the metrics SDAI1, SDAI2, SDGI1, and SDGI2 (Table 3).

CONCLUSIONS

This study proposed and validated new metrics to measure spatial dependence, based
on two distinct approaches: an additive formulation using the arithmetic mean of the
vertical and horizontal components of the semivariogram; and a multiplicative formulation
using the geometric mean. In addition, a classification for spatial dependence was
proposed. Finally, a function in R was developed to calculate the metrics and classify
spatial dependence.

The proposed metrics effectively describe spatial dependence. However, the metrics
based on the additive formulation, called spatial dependence arithmetic index 1 and
spatial dependence arithmetic index 2, stood out for their strong correlations with
performance measures and for capturing more effectively the vertical and horizontal
behaviors of the semivariogram.

Thus, faced with the challenge of summarizing all the graphical information of the
semivariogram in a single number, thus allowing the classification and comparison of
spatial dependencies, we believe that this study represents a significant advance in the
approach to this topic.

Table 3. Applying the metrics function to soilmoisture and NVDI data sets

Data Partial sill Sill Range MD
soilmoisture 1.62 4.12 78.83 401.62

NVDI 0.0036 0.0065 7.45 24.19

Data SDAI1 SDAI2 SDGI1 SDGI2
soilmoisture 39.30 (Moderate) 50.99 (Moderate) 39.30 (Moderate) 49.62 (Moderate)
NVDI 58.59 (Moderate) 68.09 (Moderate) 58.51 (Moderate) 67.78 (Moderate)

MD: maximum distance; SDAIL: spatial dependence arithmetic index 1; SDAI2: spatial dependence arithmetic
index 2; SDGI1: spatial dependence geometric index 1; SDGI2: spatial dependence geometric index 2.
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