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ABSTRACT: Knowing and defining the spatial and temporal variability of soil chemical 
properties becomes important for soil management. The definition of application zones 
in agricultural areas consists of dividing the area into homogeneous subareas, thus 
allowing the development of localized management. These zones can be defined by 
cluster methods and one of their advantages is to direct the determination of a future soil 
sampling, with a possible sample reduction. This study aimed to propose a methodology 
that integrates multivariate and space-time analyses to obtain an optimized sample 
configuration, using spatio-temporal data and application zones. First, three spatial 
multivariate clustering methods were evaluated to obtain the application zone (fuzzy 
C-means, K-means and Ward). Clusters were obtained by considering the analysis of 
spatio-temporal dependence through the empirical orthogonal function. Afterward, 50, 
60 and 70 % of the sampling points of the initial sampling configuration were selected 
in each application zone, generating an optimized sample configuration. This choice 
was made by an optimization process, whose efficiency was evaluated based on spatial 
prediction, using the sum of the Overall Accuracy Index, of all soil properties. The results 
indicated the division of the agricultural area into two application zones, considering the 
K-means method. For most soil properties, when comparing the original and reduced 
sampling configurations, a similarity was observed in descriptive statistics. Regarding the 
estimates of the accuracy indexes, considering all the optimized sample configurations, 
the best estimates were observed comparing the initial sample configurations and the 
optimized ones in 70 % for most soil chemical properties.

Keywords: application zones, empirical orthogonal function, genetic algorithm, 
geostatistics.
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INTRODUCTION
Soils are not evenly distributed on the land surface, and they are more homogeneous 
in some parts than others (Noetzold et al., 2018). Even those considered homogeneous 
have some spatial and temporal variability in their chemical, physical and biological 
properties. Spatial and temporal variability in any crop can be affected by several 
factors, such as climate, genetics, soil physical and chemical properties, topography, 
management practices, pests, diseases and the dynamic interaction among all the 
above-mentioned factors (Ortega and Santibánez, 2007). Thus, knowing and defining the 
spatial and temporal variability of the soil chemical and physical properties becomes an 
important factor for soil management, as these properties have an important influence 
on crop productivity (Amaro Filho et al., 2007; Souza et al., 2010; Barbosa et al., 2019).

Geostatistical techniques allow the study of the spatial variability of continuous 
georeferenced variables. These techniques determine the degree of spatial dependence 
between the sample elements in the region and display the spatial dependence structure 
of the georeferenced variable throughout the area, enabling the creation of thematic 
maps (Cressie, 2015; Uribe-Opazo et al., 2021, 2023).

Thus, understanding the spatial distribution of soil chemical properties is important to 
establish appropriate management practices, especially with the application of precision 
agriculture (PA) techniques, which allows the optimization of agricultural production 
and the minimization of possible environmental damage, because the adequate soil 
management, which includes localized management of soil chemical properties, allows 
soil fertility maintenance and the production system sustainability (Noetzold et al., 2018).

In PA, the definition of management zones (MZ) or application zones (AZ) in agricultural 
areas is fundamental for the localized management, since it allows to delimit the area 
into subareas with similar characteristics (Ikenaga and Inamura, 2008). The difference 
between AZs and MZs is related to the available variables used for the generation of 
zones, as well as the intention of zones generation. The MZs use stable variables and 
these zones are for long-term use, while AZs use unstable variables, and these zones 
are only used for future fertilizer application.

When samples present spatial dependence these management or application zones 
are outlined through a study of spatial variability, considering a period of several crop 
years, they aggregate greater information about the soil, such as chemical and physical 
properties, pH, as well as about crop development and agricultural yield (productivity, 
biomass, vegetation indices) (Perez-Quezada et al., 2003; Ikenaga and Inamura, 2008).

In addition, ZAs can portray indicators for future soil samplings, and thus reduce the 
number of samples that need to be collected to perform soil and crop analysis (Gavioli 
et al., 2019; Maltauro et al., 2023a). In this context, Maltauro et al. (2023a) used an 
integration of multivariate statistical techniques (principal components (PC) and clustering 
analysis), optimization processes and spatial statistics to determine a reduction in the 
number of samples initially collected in the area, thus defining the application zones. 
However, the methodology used by these authors was performed for each crop year 
individually.

The gap that this article seeks to fill is to propose a methodology that incorporates 
spatio-temporal information in the definition of these AZs, to enable the determination 
of sample configurations with reduced size. A form of description of an extensive spatio-
temporal data set is through Empirical Orthogonal Functions (EOFs), a statistical method 
that decomposes a data set in terms of orthogonal basis functions determined from the 
data. A literature review carried out by the authors found several applications in the 
climatological area (Vilela et al., 2018; Ma et al., 2021; Hannachi et al., 2023; Benestad et 
al., 2023) and in agricultural data, such as soil moisture and electrical conductivity, linked 
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to irrigation management (Perry and Niemann, 2007; Gibson and Franz, 2018; Finkenbiner 
et al., 2019; Zhao et al, 2020). The general idea is that the EOF/PCA technique seeks 
to find a new set of variables that explains most of the variance observed using linear 
combinations of the original variables, allowing a reduction of dimensionality (Hannachi 
et al., 2007). However, EOF considers that the vector “traces” of the multivariate data 
are spatially indexed, and the samples are taken over time (Wikle et al., 2019). This 
analysis is considered an exploratory spatio-temporal analysis, which, by reducing the 
data dimensionality, allows a visualization of spatial and temporal variability trends, 
revealing the spatial structure in spatio-temporal data. This can be useful for several 
scientific areas, e.g., atmospheric sciences (Finkenstädt et al., 2007; Hannachi et al., 
2007). This dimensionality reduction is made considering the matrix of spatial empirical 
cross-covariance and is mathematically based on the analysis of main components (Wikle 
et al., 2019). However, the use of EOFs in the study of the spatio-temporal variability of 
soil chemical properties, in the generation of Application Zones, and in the definition of 
spatial sampling was not found in the literature.

This study proposed a methodology that integrates multivariate and space-time analyses 
to obtain a reduced sample configuration, considering spatio-temporal agricultural data 
and application zones, using optimization processes, cluster analysis and empirical 
orthogonal functions. Sample reduction is extremely important, as it reduces the costs 
of chemical soil analysis. However, this reduction will be more efficient when associated 
with optimization and statistical techniques that maintain the efficiency in analyzing the 
spatial variability of soil properties.

MATERIALS AND METHODS

Area under study, soil data and geostatistical analysis

The agricultural area used is a grain production area, located at Agassiz Farm in Cascavel, 
PR, latitude 24.95° S, longitude 53.37° W and an average elevation of 650 m, with 167.35 ha.  
The soil in the area is classified as Latossolo Vermelho Distroférrico típico, according 
to the Brazilian Soil Classification System (Santos et al., 2018), which corresponds to 
an Oxisol, according to the Soil Taxonomy (USDASoil Survey Staff, 1999), with a clayey 
texture. Climate of the region is classified as mesothermal temperate and superhumid, 
type Cfa (Köeppen classification system) (Aparecido et al., 2016).

The area has 102 sampling points, arranged by lattice plus close pairs sampling (Chipeta 
et al., 2017; Maltauro et al., 2021, 2023a). This sampling design has a minimum distance 
between the points of the regular grid equal to 141 m, and in some places, randomly 
chosen, the sampling was performed with smaller distances between pairs of points (75 
and 50 m) (Figure 1a). The 141 m sampling grid was defined by studies initially carried 
out in the agricultural area and considered adequate. However, some points at 50 and 
75 m were considered to estimate the nugget effect better. The combination of these 
distances followed the combination of samples from different sampling grids (Uribe-Opazo 
et al., 2007; Guedes et al., 2011). All samples were localized and georeferenced through 
a Global Navigation Satellite System (GNSS) receiver (GeoExplorer, Trimble Navigation 
Limited, Sunnyvale, CA, USA), in a Datum WGS84 coordinate reference system, Universal 
Transverse Mercator (UTM) projection.

Soil chemical properties that showed spatial dependence were used: Carbon (C) [g dm-3], 
Calcium (Ca2+) [cmolc dm-3], Manganese (Mn) [mg dm-3] and Zinc (Zn) [mg dm-3]. For 
the generation of AZs (Figure 1b), since the properties used are not considered stable, 
presenting variations over the years-harvest, it was decided to work with four crop years, 
being 2012-2013, 2013-2014, 2014-2015 and 2015-2016 (in each crop year, described 
by “year1-year2”, where soybean was planted in October of the first year and harvested 
in February of the second year).
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Considering all the harvest years and soil chemical properties, the descriptive and 
geostatistical analyses of each soil chemical property were initially performed (Figure 2). 
The directional trend was evaluated by Pearson's linear correlation coefficient (Callegari-
Jacques, 2003). While anisotropy was evaluated through the analysis of directional semi-
variograms (Guedes et al., 2018) and the Maity and Sherman test (non-parametric) 
(Maity and Sherman, 2012), considering 5 % significance. Parameters of geostatistical 
models were estimated: gaussian, exponential, and Matérn family with a smoothing 
parameter k = 1.5; 2 and 2.5 by means of the maximum likelihood method (Uribe-
Opazo et al., 2012), using the criteria of cross-validation and Akaike (AIC) for the choice 
of the best adjusted model (Faraco et al., 2008). Spatial dependence was evaluated by 
classification of relative nugget effect (RNE) (Cambardella et al., 1994). Subsequently, 
considering the spatial prediction of each property, in non-sampled locations in the 
agricultural area, using ordinary kriging, thematic maps of each soil chemical property 
were created (Cressie, 2015).

Figure 1. Agricultural area with the location of the sampling points (a) and the soil chemical properties used in the research (b).

Figure 2. Methodology to obtain the optimized sample configuration.
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Spatio-temporal analysis

In each crop year, considering the selected soil chemical properties, the aim was to 
analyze the spatial-temporal dependence structure, using the Empirical Orthogonal 
Function (EOF), which has a relationship with the principal component analysis (PCA) 
(Cressie and Wikle, 2011). In addition to being calculated from the decomposition of 
the empirical spatial covariance matrix with temporal lag equal to 0 (lag-0), the EOFs 
can be obtained through a singular value decomposition (SVD), providing computational 
benefits in some cases. To see the equivalence, we first show how to calculate the EOFs 
based on empirical covariance.

Be Z the spatio-temporal, T × m dimension data matrix, whose j-th line is given by the 
vector Ztj =

(
Z(s1; tj), . . . ,Z(sm; tj)

)′, in which Z(si;tj), the value of the georeferenced 
variable, is observed in the s location and in the j-th time (tj), with i=1,...,m and j=1,...,T,; 
in which m is the number of locations observed and T is the number of moments observed 
in time. The matrix Z must be a spatio-temporal matrix "no trend" and in scale, obtained 
by the transformation given by equation 1 (Wikle et al., 2019):

Z̃ ≡ 1√
T− 1

(
Z− 1T μ̂′

z,s

)
Eq. 1

in which: 1T is a T-dimensional vector of ones and μ̂
′
z, s  is the vector of averages of the 

georeferenced variable Z (m × 1) in each vector location s = (s1, . . . , sm)′, considering 
all times. Temporal lag consists of the time interval, and the temporal lag equal to zero 
represents each moment analyzed. Thus, considering temporal lag equal to zero, the 
empirical spatial covariance matrix of Z, with dimension m × m and given by C(0)

z = Z̃′Z̃,  
can be decomposed according to equation 2.

C(0)
z = ΨΛΨ′ Eq. 2

in which: Λ ≡ diag (λ1, . . . , λm) is a diagonal matrix, m × m, of eigenvalues of C(0)
z

∣∣ λk > 0,  
with k = 1,...,m, ordinated incrementally, and Ψ ≡ (ψ1,...,ψm)' is a matrix m × m of 
eigenvectors of Cz

(0), indexed spatially and corresponding to the eigenvalues of Λ, whose 
k-th eigenvector, Ψk = (ψk (s1),...,ψk (sm))', is called k-th EOF, for k = 1,...,m. (Hannachi et 
al., 2007). Likely PCA, the EOFs have two good properties, namely: (A) the EOFs make 
a discrete orthonormal basis (that is, Ψ'Ψ = ΨΨ' = I), and (b) the first EOFs contain the 
majority of the data information, considering the total of spatial empirical variance with 
zero time lag, which corresponds to the sum of the diagonal of Cz

(0). In addition, each EOF 
can be represented graphically through spatial maps, once each value of the same is 
associated with a known spatial location. These maps allow to obtain some understanding 
on important spatial standards of variability in a sequence of spatio-temporal data.

The k-th column of A = (
√
T− 1)Z̃Ψ  generates the time series of k-th PC obtained in 

the analysis of EOF, in which k = 1,...,m, for each element of this time series is then 
calculated for time tj, with j = 1,...,T, given by ak

(
tj
)
= Z̃tjΨk. The time series of the PCs 

can be normalized by Anorm = AΛ−1/2, which are just the time series of PCs divided by 
their standard deviation, so that the temporal variance of the normalized time series 
is equal to one, allowing the time series of each EOF to be plotted on the same scale, 
letting their relative importance be captured by their corresponding eigenvalues.

On the other hand, considering the SVD of the data matrix without trend and sized Z̃ , 
t × m, we have the equation 3.

Z̃ = U×D× V′ Eq. 3
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in which: U is the singular vectors to the left, T × T; D is a matrix containing singular 
values in the main diagonal, T × m; and V is a matrix, m × m, containing the singular 
values to the right, where U and V are orthonormal matrices. Thus, it is possible to see 
that the EOFs are given by Ψ = V, and Λ = D'D.

In addition, the A = (
√
T− 1)UD and the first m columns of (

√
T− 1)U correspond to 

the normalized PC time series, denominated by Anorm. Thus, the advantages of the SVD 
calculation approach are: (1) It is not necessary to calculate the empirical spatial covariance 
matrix; (2) the normalized PC time series and EOFs are obtained simultaneously; and 
(3) the procedure still works when T < m. The case of T < m can be problematic in the 
covariance context, as Cz

(0) is not positively defined, although, as shown in Cressie and 
Wikle (2011), in this case, it is still possible to calculate the time series EOFs and PC. 
Considering every crop year, the EOF was applied for each soil chemical property to reveal 
the spatial structure in spatio-temporal data, besides reducing the data dimensionality.

Most of the papers do not explain a method to select the number of EOFs that are really 
significant. Wikle et al. (2019) suggest that perhaps the simplest explanation for this 
is to consider the number of EOFs that represent some desired proportion of the total 
variance, or that one can use the PCA criteria to select the number of EOFs. Thus, it was 
used the criterion that considers the first EOFs (PCs) that explain more than 70 % of the 
total variability of the original variables (Furtado, 1996). The selected EOFs (eigenvectors) 
were distributed in columns forming an array C. In this matrix C, a geostatistical model 
was adjusted, and the data were interpolated using Kriging, with pixels representing 
areas of 10 × 10 m. These data generated by interpolation were used as input in the 
application to divide the study area into AZs (Gavioli et al., 2016; Maltauro et al., 2021).

Generation of the Application Zone

For the generation of AZ, three clusters methods were evaluated, namely: Fuzzy C-means, 
K-means and Ward (Ward Jr, 1963; Macqueen, 1967; Kaufman and Rousseeuw, 1990). 
To select the best clustering method, five evaluation criteria were used namely: Dunn 
Index (D), Davies Bouldin Index (DB), C Index, SD Index and Variance reduction index 
(VR) (Dunn, 1974; Hubert and Levin, 1976; Davies and Bouldin, 1979; Halkidi et al., 2000; 
Gavioli et al., 2016). To define the ideal number of groups for the set of data, it was used, 
in each cluster method, the scatter plots of the Sum of Square of Errors Method (SSE) 
versus the number of groups (knee chart), and silhouette scatter versus the number of 
groups (Tan et al., 2009; Yi et al., 2013).

Reduced sample configuration

After the definition of AZ, obtaining the optimized sample configurations in 50, 60 and 
70 % of the initial sample size were considered an optimization problem (Maltauro et 
al., 2019), aiming to select sampling points within each AZ. A methodology developed 
by Maltauro et al. (2021, 2023a,b), similar to that developed for the genetic algorithm 
(GA), was used to obtain the optimized sample configuration, using 1500 crossings 
among the individuals.

As the aim is to generate an optimized sample configuration for all the crop years and 
soil chemical properties, a multi-objective optimization was performed using the weighted 
sum method (WS), which consists of the sum of the objective function of each property, 
weighted by a weight (Branke et al., 2008; Pantuza Jr., 2016).

The efficiency was evaluated based on spatial prediction, considering the objective 
function Overall Accuracy (OA), a similarity measure between the initial and optimized 
sampling configurations of each soil chemical property (Maltauro et al., 2021). Thus, in 
the WS method, the multi-objective function is given by equation 4.



Maltauro et al. Optimization algorithms for multivariate sampling reduction using…

7Rev Bras Cienc Solo 2025;49:e0240097

min F (xi) =
p∑

k=1
[1− OAk (xi)]× wm, Eq. 4

in which: xi is the i-th sample configuration to the problem, with sample sizes analyzed 
in this study of 50, 60 and 70 % of the sample points; wm = 1/p and the weight for each 
function objective fk (xi) = 1− OAk (xi) of the k-th soil property, with k = 1,...,p, in which p 
is the number of soil properties, such that wk ∈ [0,1],∑p

k=1 wk = 1 and OAk (xi) ∈ [0,1].  
Thus, upon minimizing F(xi), which is a linear combination of the k objective functions, 
the lowest values of fk(xi) will be obtained, which correspond to higher values of OAk (xi).

Considering the optimized sample configuration, descriptive and geostatistical data 
analyses were performed again. Finally, the initial and optimized sample configurations 
were purchased through metrics that express the similarity of the thematic maps obtained 
by kriging, namely: OA (Anderson et al., 2001) and Kappa concordance indexes (Kp) and 
Tau (T) (Krippendorff, 2013) (Figure 2).

Computational resources

The routines of the calculation of spatio-temporal analysis, sample configuration, 
optimization and other statistical and geostatistical analyses were performed in the  
R (R Development Core Team, 2023) software, considering the geoR packages (Ribeiro 
Jr and Diggle, 2016), gstat (Pebesma and Graeler, 2022), and spacetime (Pebesma  
et al., 2023).

RESULTS AND DISCUSSION

Descriptive statistics and initial geostatistics

There was a variation in the average values of each soil chemical property over the 
years. The average values of C content were 32.20, 31.28, 29.42, and 32.01 g dm-3, the 
average values of the Ca2+ content were 6.50, 6.22, 5.38, and 5.50 cmolc dm-3, while 
the average values of the Mn content were 74.33, 60.96, 76.54, and 86.41 mg dm-3. 
Finally, the average values of the Zn content were 3.97, 2.93, 2.81 and, 4.97 mg dm-3, 
respectively for the harvest years 2012-2013, 2013-2014, 2014-2015, and 2015-2016 
(Table 1).

In all the harvest years studied, soil chemical properties presented heterogeneity of 
their values (Zn with a coefficient of variation (CV) >30) (Pimentel-Gomes and Garcia, 
2002), or homogeneous data (CV ≤30) (Pimentel-Gomes and Garcia, 2002) (Table 1). 
Also, the contents of Ca2+, C, Mn showed average values considered medium, high or 
very high for soil use (Oliveira, 2007; Pavinato et al., 2017). The mean values of Zn can 
be classified as low or medium (Pavinato et al., 2017). The soil chemical properties are 
fundamental for the plants’ growth and development, some in greater quantities (Ca), 
while others require lesser quantities (Mn and Zn), and excess or lack of it can harm 
productivity (Mendes, 2007; Oliveira, 2007).

As for the directional trend, only the soil chemical property Zn for the harvest-year  
2014-2015 showed a moderate linear association of their respective values with the 
coordinates of the X-axis (Pearson's linear coefficient value greater than 0.30) (Callegari-
Jacques, 2003). Regarding spatial dependence, soil chemical properties presented 
moderate or strong spatial dependence, and this makes thematic maps more accurate 
than those generated with weak spatial dependence (Cambardella et al., 1994).
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Spatio-temporal analysis

As for the spatial average of the soil chemical properties, considering all the studied 
harvest years, it is noticed that there was a variation of the values of these properties 
in the sampling points of the area under study (Figure 3).

Table 1. Descriptive statistics and estimated values of the geostatistical model parameters for the soil chemical properties, referring 
to each harvest year and considering the initial sampling configuration

Harvest 
years Property

Descriptive statistics Estimation of the attributes by the geostatistical model

Mean CV Coef X Coef Y Model μ̂ φ̂1 φ̂2 â ̂R N E

2012-
2013

C (g dm-3) 32.20 11.12 0.23 0.03 M k = 2.5 31.58 5.50 7.15 400.56 43.47
Ca2+ (cmolc dm-3) 6.50 24.93 0.13 0.29 Gaus. 6.50 1.900 0.70 377.62 73.18

Mn (mg dm-3) 74.33 25.72 -0.05 0.36 M k = 2.5 -58280; 0.008 65.66 281.40 403.20 18.92
Zn (mg dm-3) 3.97 58.76 0.25 0.19 Exp. 3.94 2.31 2.99 268.23 43.62

2013-
2014

C (g dm-3) 31.28 12.40 0.07 -0.12 M k = 2.5 31.25 7.50 7.38 112.95 50.38
Ca2+ (cmolc dm-3) 6.22 22.46 -0.08 -0.05 Gaus. 6.19 1.08 0.87 179.00 55.27

Mn (mg dm-3) 60.96 33.69 -0.11 0.12 Gaus. 60.31 171.59 225.55 203.98 43.20
Zn (mg dm-3) 2.93 90.85 -0.03 0.01 Gaus. 2.89 1.21 5.90 173.05 16.97

2014-
2015

C (g dm-3) 29.42 12.67 0.23 -0.12 Exp. 29.53 8.60 5.41 511.34 61.39
Ca2+ (cmolc dm-3) 5.38 25.11 0.22 0.03 Exp. 5.40 1.05 0.75 231.56 58.49

Mn (mg dm-3) 76.54 27.43 0.08 -0.03 Gaus. 77.30 233.70 209.80 453.07 52.69
Zn (mg dm-3) 2.81 61.61 0.31 0.01 Gaus. -326.73; 0.001 0.54 2.28 162.73 19.12

2015-
2016

C (g dm-3) 32.01 10.58 0.11 -0.23 Exp. 31.80 5.97 5.37 576.28 52.65
Ca2+ (cmolc dm-3) 5.50 24.12 -0.01 0.05 Gaus. 5.53 1.29 0.48 284.08 72.78

Mn (mg dm-3) 86.41 25.66 -0.11 0.09 Gaus. 86.78 268.79 226.14 367.29 54.30
Zn (mg dm-3) 4.97 40.92 0.21 0.23 Gaus. 5.10 1.59 3.04 367.65 34.30

CV: coefficient of variation; Coef X (Y): Pearson's linear correlation coefficient for each coordinate (X and Y) with each of the soil chemical properties; 
μ̂ = β0 : estimated mean; φ̂1: estimated nugget effect; φ̂2: estimated contribution; â: estimated practical range; R̂NE : estimated relative nugget 
effect 

(
R̂NE = φ̂1/φ̂1 + φ̂2

)
(%); for properties that showed a directional trend μ̂ = β0 + β1Y1, in which β̂0 (first value of the μ̂ column), β̂1(second value of  

the μ̂ column): estimated values of the parameters of the regression model and Y1 represents the directional trend identified; Exp.: exponential model; 
Gaus.: Gaussian model; M k = 2.5: Matérn model with smoothness parameter k = 2.5.

Figure 3. Temporal mean and spatial mean of soil chemical properties C, Ca2+, Mn and Zn, considering the four harvest years 2012-
2013 (1), 2013-2014 (2), 2014-2015 (3), and 2015-2016 (4).
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Temporal means of the soil chemical properties, considering all spatial locations, show 
the nature of the soil chemical property and the variations of these properties over the 
four harvest years (Figure 3). A decrease in the concentration of the chemical properties 
is observed in the harvest year 2014-2015 for most soil chemical properties, and this 
may have been caused by leaching (Figure 3). This figure shows the temporal means of 
the concentration of soil chemical properties at each location, allowing for interpretation 
of property concentrations over the years (Wikle et al., 2019).

For each soil chemical property, the EOFs were obtained, as well as the percentages of 
variance explained by the EOFs. Some studies presented in the literature use the amount 
of EOFs that explain a high variance value (greater than 85 %) (Zhao et al., 2020; Ma et 
al., 2021). However, in this study, the first two EOFs were selected for all the soil chemical 
properties, because they explain more than 70 % of the total variability of the original 
variables (Furtado, 1996). The EOF1 and EOF2 explain, respectively, 45.82 and 33.61 %  
of the total variability for the C content, 45.17 and 35.27 % of the total variability for the 
Ca2+ content, 66.61 and 20.85 % of the total variability for the Mn content, and 43.36 
and 34.90 % of the total variability for the Zn content.

One advantage of using EOFs is the reduction of dimension in a spatial or spatial-temporal 
representation of random effects (Wikle et al., 2019). In addition, the method presents 
several advantages, such as consistency and mathematical elegance, and is a tool that 
highlights the interrelations among the variables. For each soil chemical property, the 
first two EOFs are presented, considering the four harvest years (Equations 5 to 12).

EOF1C = 0.4474X1 + 0.5610X2 + 0.4623X3 + 0.5209X4 Eq. 5

 EOF2C = −0.1612X1 + 0.7069X2 − 0.6865X3 − 0.0120X4 Eq. 6

EOF1Ca2+ = 0.6097X1 + 0.4131X2 + 0.4857X3 + 0.4708X4 Eq. 7

EOF2Ca2+ = −0.6068X1 + 0.7892X2 + 0.0939X3 − 0.0036X4 Eq. 8

EOF1Mn = −0.4845X1 − 0.4587X2 − 0.5138X3 − 0.5391X4 Eq. 9

EOF2Mn = 0.1137X1 + 0.7906X2 − 0.2292X3 − 0.5562X4 Eq. 10

EOF1Zn = −0.0388X1 − 0.9253X2 + 0.0796X3 − 0.3688X4 Eq. 11

EOF2Zn = 0.9608X1 − 0.1293X2 + 0.0633X3 + 0.2370X4 Eq. 12

in which: X1 is the harvest year 2012-2013; X2 is the harvest year 2013-2014; X3 is the 
harvest year 2014-2015; and X4 is the harvest year 2015-2016.

For the C content in the soil, EOF1 represents a weighted mean of all harvest years, 
with more influence of 2013-2014 and 2015-2016 directly. From the map of this EOF1 
(Figure 4), considering all the harvest years, the highest values are distributed more to 
the North and South of the study area. Thus, the C content in the soil had higher values 
in these sub-regions, mainly in the 2013-2014 and 2015-2016 harvest years. On the 
other hand, the lowest values of EOF1 and consequently of the C content in the soil 
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are distributed in the central region. Meanwhile, the EOF2 represents a contrast mainly 
between the harvest years 2014-2015 (with inverse influence) and 2013-2014 (with 
direct influence). Through the EOF2 map (Figure 4), the north and south regions highlight 
exhibiting the highest values of EOF2, and consequently, when comparing the harvest 
years, the highest values of C content in the soil in the harvest year 2013-2014 and the 
lowest values in 2014-2015.

Regarding the Ca2+ content in the soil, EOF1 represents a weighted average across all 
harvest years, with a stronger direct influence from the 2012–2013 period. The spatial 
distribution of EOF1 (Figure 4) reveals values dispersed throughout the entire study area 
when considering all harvest years. In addition, it is highlighted that the Ca2+ content 
in the soil obtained the highest values in the South sub-regions in all the harvest years, 
mainly in 2012-2013. On the other hand, the lowest values of EOF1 and consequently 
of Ca2+ content in the soil are distributed in the North region in all the harvest years, 
mainly in 2012-2013.

Whereas the EOF2 of Ca2+ content in the soil represents a contrast mainly between the 
harvest years 2012-2013 (with inverse influence) and 2013-2014 (with direct influence). 
Through the EOF2 map (Figure 4), the north and west regions highlight exhibiting the 
highest values of EOF2, and consequently, when comparing the harvest years, the 
highest values of Ca2+ content in the soil in the harvest year 2013-2014 and the lowest 
values in 2014-2015 and 2015-2016.

Figure 4. Map of the first two EOFs for each soil chemical property, considering all harvest years 
2012-2013, 2013-2014, 2014-2015 and 2015-2016.
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For the Mn content in the soil, the EOF1 represents a weighted mean of all the harvest 
years, with more influence of 2014-2015 and 2015-2016 inversely. Whereas EOF2 
represents a contrast mainly between the harvest years 2014-2015 (with direct influence) 
and 2015-2016 (with inverse influence). The EOF1 map (Figure 4) highlights the region 
north and west, with higher sub-regions having higher values of EOF1. What represents 
lower values in these sub-regions of Mn content in the soil, in all the harvest years, 
mainly in 2014-2015 and 2015-2016.

For the map of EOF2 (Figure 4) of Mn content in the soil, considering all harvest years, 
the values of EOF2 are more divided in the whole study area, highlighting a higher 
formation of the lowest EOF2 values in the central and central-west region of the study 
area and higher values in the north and south regions. When comparing harvest years, 
the 2013-2014 period exhibited the lowest soil Mn content values in the central and 
central-west regions, while the highest values were observed in the north and south 
regions. In contrast, the 2015-2016 harvest year showed an inverse trend across these 
same regions.

Finally, for the Zn content in the soil, the EOF1 represents a weighted mean of all harvest 
years, with more influence of 2013-2014 and 2015-2016 indirectly. Through the EOF1 
map (Figure 4), it is observed that higher values are in the regions north and southeast 
of the study area, representing lower values of Zn content in the soil in these same 
regions. Meanwhile, in EOF2, a higher influence is highlighted directly in the harvest 
year 2012-2013. The EOF2 map (Figure 4) revealed that the southern region exhibited 
the lowest EOF2 values, whereas the central region displayed the highest values. This 
pattern indicates that the Zn content in the soil during the 2012-2013 harvest year was 
highest in the southern region and lowest in the central region.

In general, the EOF maps indicated distinct variability patterns for each soil chemical 
property, presenting important patterns of variability. The maps of the first EOFs explain 
the largest and main variations in soil chemical properties, while the second EOFs 
highlight secondary characteristics (Wikle et al., 2019). Furthermore, since soil chemical 
properties are necessary for plant growth and development, it is essential to identify 
their availability in the soil (Mendes, 2007; Oliveira, 2007). Plants require high amounts 
of Ca2+, while Mn and Zn levels are required in smaller amounts, being absorbed in the 
form of cations (Mendes, 2007; Oliveira, 2007). Carbon plays several roles in biomass 
formation and plant metabolism (Lopes, 1998; Ferreira et al., 2014; Assad et al., 2019). 
It was observed that two crop years stood out in the EOF analyses, 2013-2014 and 2015-
2016. According to Gasparin et al. (2024), when developing agroclimatic regionalization 
in Paraná, the west of Paraná was characterized in 2015-2016 as rainy, with the highest 
average precipitation values between 352 and 833 mm and low values of water balance, 
that is, the counting of water inflows and outflows, with the aim of establishing the 
variation in storage and, as a consequence, the availability of water in the soil. In contrast, 
2013-2014 had a precipitation close to the average of the historical series evaluated, 
varying between 1073 to 1842 mm, and a positive water balance. Also, these authors 
identified high values of minimum, average, and maximum temperatures during the 
crop cycle for both harvest years, varying from 14 to 33 °C for 2013/2014, and from 18 
to 32 °C for 2015/2016.

Moreover, comparing these two crop years (2013/2014 and 2015/2016), there was a  
4.74 % increase in soybean productivity in Paraná. However, 2015/2016 was considered a 
year with lower productivity. There was a 6.2 % drop in soybean productivity compared to 
the 2014/2015 crop year and an 8 % loss in productivity when comparing the estimated 
potential production with the real production obtained (Hirakuri, 2016). The difference 
among the crop years, indicated by EOFs, may have been influenced by climatic factors, 
because the temporal variability of soil chemical properties, soybean productivity, and 
the interaction between soil and plant is influenced by the climate (Liu et al., 2016; 
Cordovil et al., 2024).
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Generation of the Application Zones

It is important to consider spatial and temporal variability when making management 
decisions (Luchiari Junior et al., 2011). Furthermore, the generation of AZs with more than 
one year-crop aggregates a lot of information, considering the variability of properties 
over time. Since the used agricultural area already considers precision agriculture, it 
is possible to show that the spatial variability decreases over the years, indicating a 
stability of these properties over the harvest years.

Considering the scatter plots of the number of groups versus the SSE and the silhouette, 
the best number of groups for all the clustering methods was two groups (Figures 5a and 
5b), being that the K-means method was the best cluster method for the generation of 
AZ, according to the values obtained from the following indices: Davies Bouldin (DB), C, 
SD, and Variance reduction (VR) (Table 2).

Borge et al. (2022) also used the scatter plots of the number of groups versus the SSE 
and the silhouette, along with the gap statistics method, to find the ideal number of 
groups, concluding that the optimal number of groups for NO2, PM10 and PM2.5 was 
equal to 5, while for O3 was equal to 4. Syakur et al. (2018) used the scatter plot of the 
number of groups versus the SSE (knee chart) for the selection of the number of groups 
in the customers’ mapping, concluding that the chart shows a sharp drop in the sum 
of squared errors values with three groups, and this was the ideal number of groups. 

Figure 5. Silhouette graph (a) and Knee graph (SSE - sum of squared errors) (b); and thematic 
maps with the best number of application zones and clustering method chosen for the sample 
configuration reduced by 50 % (a), 60 % (b), and 70 % (c).

Table 2. Evaluation measures according to the clustering method used to generate application 
zones

Indices C-means K-means Ward
D 0.0045 0.0076 0.0084
DB 1.4826 1.4593 1.6362
C 0.2494 0.2468 0.2843
SD 13.9458 13.7557 15.0600
VR 28.2434 28.3243 24.4748

D: Dunn Index; DB: Davies Bouldin Index; C: C Index; SD: SD Index; and VR: Variance Reduction Index. The 
best results of the indices are highlighted in bold type.
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Jipkate and Gohokar (2012) also concluded that the K-means method produces better 
computing times and results compared to the C-means method. Still, Rodrigues Junior 
et al. (2011) and Alves et al. (2013) showed that the K-means method was also efficient 
for the delimitation of the MZs from the interpolated variability maps, and for the coffee 
farming, based on determinations carried out with a chlorophyll sensor and through foliar 
analysis. Crispim et al. (2019) showed that the K-means and Ward methods allowed the 
decrease of the number of municipalities for four groups, composed of municipalities 
that possibly have similar characteristics within each group and different from the others. 
Maltauro et al. (2023a,b) also concluded that the K-means method was the best cluster 
method to generate application zones, considering chemical properties of the three-
year-crop soil.

Therefore, with the best number of groups and cluster method selected, the map of ZA 
was generated. Considering that the highest AZ (AZ1, red color; Figures 5c, 5d and 5e) 
occupied 102.63 ha (61.33 % of the area), and it was composed of 58 initial sample 
points (57 % of the total sample points of the initial configuration), while the lowest 
AZ (AZ2, dark green; Figures 5c, 5d and 5e) occupied 64.72 ha (38.67 % of the area), 
covering 44 initial sample points (43 % of the total sample points of the initial sample 
configuration) (Figures 5c, 5d and 5e).

The main advantage for the farmer in this reduction in the number of samples will be 
the reduction in costs with laboratory analyses and the time involved in collecting soil 
to carry out these laboratory analyses. This reduction is only possible because, due to 
spatial dependence, there are similar sampling units within a spatial radius and, therefore, 
have redundant information. Therefore, for a new sample to represent regions with more 
similar pairs of points, there will be a need for a smaller number of sample points that 
summarize the information of the original sample (Dal’ Canton et al., 2021).

In addition, the AZs represent most of the spatial trends in the studied harvest years 
described in figure 5, highlighting AZ2 that exhibits the highest values of all the chemical 
properties of the soil considered, in the harvest year of 2013-2014 and the lowest values 
of these properties in the harvest year 2015-2016. Whereas the AZ1 presents the central 
region with lower C and Mn content values in the soil in the 2013-2014 and 2015-2016 
harvest years, the highest values of Zn content in the soil were in 2012-2013.

Optimized sample configuration

Considering the generated AZs, it has been observed that in the optimized sample 
configuration in 50 % (O50) of the initial sampling points, 51 sampling points were 
obtained (Figure 5c); in the optimized sampling configuration that removed 40 % (O60) 
of the initial sampling points, 61 sampling points were obtained (Figure 5d); while the 
optimized sampling configuration, reducing 30 % (O70) of the initial sampling points, 
comprised 71 sampling points distributed in the agricultural area (Figure 5e).

Taking into account all the optimized sample configurations (O50, O60, O70), the AZ1 
covered 29, 35 and 41 sampling points (57 % of the total sampling points of the reduced 
sample configuration), while AZ2 included 22, 26 and 30 sampling points (43 % of the 
total sampling points of the reduced sample configuration), indicating that the same 
proportion of sample points in each AZ, comparing with the initial sample configuration.

A similarity was observed in the descriptive statistics of the initial and optimized 
sample configurations (Tables 1, 3, 4 and 5), thus indicating that the optimized sample 
configurations are representative due to the similarity found (Maltauro et al., 2023a). 
These results have also been found by Maltauro et al. (2019; 2021; 2023a,b), finding 
similar sample sizes even when working with different methodologies to obtain a sample 
reduction. Furthermore, these studies were developed in the same agricultural area, 
considering different soil chemical properties.
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Considering the sample configuration reduced by 50 %, the C content in the soil showed 
a directional trend in the X direction (East-West) for the harvest years 2012-2013 and 
2014-2015, while the Ca2+ and Mn contents in the soil indicated a directional trend in 
the Y direction (North-South) for the 2012-2013 harvest year (Table 3).

In the sample configuration optimized in 60 %, only the Mn content in the soil showed 
a directional trend towards Y (North-South) to the harvest year 2012-2013 (Table 4). 
Whereas in the sample configuration optimized in 70 %, the C content in the soil showed 
a directional trend in the X direction (East-West), and the chemical property of the soil 
Mn in the direction Y (North-South) for the harvest year 2012-2013 (Table 5).

Considering spatial dependence, most of the soil chemical properties presented moderate 
or strong spatial dependence, as in the initial sample configuration, except the C content 
in the soil, which presented weak spatial dependence for the harvest years 2013-2014 
and 2014-2015, considering the sample configuration optimized in 50 %. Meanwhile, in 
the sample configuration optimized at 60 %, only the Ca content in the soil indicated 
weak spatial dependence for the harvest years 2014-2015 and 2015-2016 (Tables 4  
and 5). However, for all the sample configurations optimized, some soil chemical properties 
presented pure nugget, namely Zn content in the soil for the harvest years 2012-2013 
and 2014-2015, and the Mn content in the soil, in the harvest year 2014-2015 (Tables 
3, 4 and 5).

A comparison of the thematic maps for soil chemical properties between the initial and 
optimized sampling configurations revealed that only Mn content in the 2012-2013 
harvest year achieved an estimated overall accuracy (OA) exceeding 85 % under the  

Table 3. Descriptive statistics and estimated values of the geostatistical model parameters for the soil chemical properties, referring 
to each harvest year and considering the sample configuration optimized by 50 %

Harvest 
years Property

Descriptive statistics Estimation of the properties by the geostatistical model

Mean CV Coef X Coef Y Model μ̂ φ̂1 φ̂2 â ̂R N E

2012- 
2013

C (g dm-3) 32.05 11.07 0.38 -0.08 M k = 2.5 -807.01; 
0.0035 3.07 7.22 357.02 29.82

Ca2+ (cmolc dm-3) 6.62 22.95 0.08 0.43 Gaus. -12850; 
0.0018 1.84 0.01 190.28 99.98

Mn (mg dm-3) 74.55 25.06 -0.01 0.35 Gaus. -0,0008; 
0.0116 115.90 197.00 314.68 37.03

Zn (mg dm-3) 3.94 60.23 0.27 0.20 Exp. 3.94 0.00 5.57 189.08 0.00

2013-
2014

C (g dm-3) 31.34 12.61 0.09 0.05 Gaus. 31.33 15.30 0.01 153.66 99.95
Ca2+ (cmolc dm-3) 6.28 24.50 -0.17 0.13 Gaus. 6.21 1.06 1.26 220.68 45.66

Mn (mg dm-3) 60.35 36.98 -0.10 0.16 Gaus. 59.70 217.00 258.40 305.25 45.66
Zn (mg dm-3) 2.96 97.55 0.08 0.23 Gaus. 2.85 1.73 6.50 163.40 20.99

2014- 
2015

C (g dm-3) 28.60 12.20 0.37 -0.07 Gaus. -781.37; 
0.0034 9.27 1.09 555.60 89.43

Ca2+ (cmolc dm-3) 5.22 23.95 0.20 0.12 Exp. 5.20 0.99 0.53 186.25 65.32
Mn (mg dm-3) 74.84 26.02 0.14 -0.11 Exp. 73.89 0.00 357.82 272.50 0.00
Zn (mg dm-3) 2.71 69.10 0.23 0.04 Exp. 2.82 0.00 3.71 364.51 0.00

2015-
2016

C (g dm-3) 31.41 11.58 0.13 -0.21 Exp. 31.56 4.87 8.07 276.03 37.62
Ca2+ (cmolc dm-3) 5.47 21.08 -0.16 0.26 Gaus. 5.48 0.88 0.38 350.26 69.94

Mn (mg dm-3) 85.19 27.34 -0.18 0.20 Gaus. 85.19 310.92 205.48 435.57 60.21
Zn (mg dm-3) 4.73 45.95 0.18 0.29 Gaus. 4.95 1.22 3.78 354.03 24.47

CV: coefficient of variation; Coef X (Y): Pearson's linear correlation coefficient for each coordinate (X and Y) with each of the soil chemical properties; 
μ̂ = β0 : estimated mean; φ̂1: estimated nugget effect; φ̂2: estimated contribution; â: estimated practical range; R̂NE : estimated relative nugget 
effect 

(
R̂NE = φ̂1/φ̂1 + φ̂2

)
(%); for properties that showed a directional trend μ̂ = β0 + β1Y1, in which β̂0 (first value of the μ̂ column), β̂1(second value of  

the μ̂ column): estimated values of the parameters of the regression model and Y1 represents the directional trend identified; Exp.: exponential model; 
Gaus.: Gaussian model; M k = 2.5: Matérn model with smoothness parameter k = 2.5.
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70 % optimized sampling configuration. This high OA value (>85 %; Anderson et al., 2001) 
indicates strong similarity between the maps, suggesting consistent spatial distributions 
of the studied properties across both sampling designs. Half of the soil chemical properties 
in all harvest years present high values of OA, above 80 %, and this measure indicates 
that 80 % of the pixels were equally classified in the same ranges of variation of the soil 
chemical properties values, when comparing the elaborated thematic maps with the 
original and optimized sample configurations. However, according to the classification 
of Anderson et al. (2001), these maps are considered non-similar, as the OA values are 
lower than 85 % (Table 6; Figures 6, 7, and 8).

For all the soil chemical properties, the spatio-temporal trends observed in the maps 
generated by the EOFs values of each property (Figure 4) were the same in the maps 
elaborated considering the initial sample configurations (Figures 6, 7, and 8), highlighting 
similarities in the distribution of these properties by the study area in both maps.

A similarity is observed in the results obtained by the estimated values of the Kp and 
T concordance indices. The comparison of the initial sample configuration with the 
optimized ones showed low or average accuracy, with values between 0.01 and 79 % 
(low accuracy if Kp; T <67 %; mean accuracy if 67 % ≤ Kp; T ≤80 %) (Krippendorff, 
2013), for most soil chemical properties (Table 6; Figure 6, 7, and 8). Only the chemical 
properties of the soil Mn and Zn, considering respectively the configuration optimized 
in 70 % and harvest year 2012-2013, and the sample configuration optimized in 60 % 
and harvest year 2015-2016, presented high accuracy, with Kappa or Tau values higher 
than 80 % (Krippendorff, 2013) (Table 6; Figures 6, 7, and 8).

Table 4. Descriptive statistics and estimated values of the geostatistical model parameters for the soil chemical properties, referring 
to each harvest year and considering the sample configuration optimized by 60 %

Harvest 
year Property

Descriptive statistics Estimation of the properties by the geostatistical 
model

Mean CV Coef X Coef Y Model μ̂ φ̂1 φ̂2 â ̂R N E

2012- 
2013

C (g dm-3) 32.35 12.16 0.12 0.07 Exp. 31.73 2.76 12.56 406.28 18.01
Ca2+ (cmolc dm-3) 6.77 28.05 0.03 0.29 Gaus. 6.75 2.45 1.17 351.79 67.74

Mn (mg dm-3) 76.11 28.40 -0.09 0.36 Gaus. -0,0009; 
0.013 89.99 338.70 295.76 20.99

Zn (mg dm-3) 4.09 65.54 0.19 0.28 Exp. 3.95 4.82 2.21 418.81 68.54

2013-
2014

C (g dm-3) 31.03 13.30 0.13 -0.14 M k = 1.5 30.94 4.54 12.19 159.46 27.14
Ca2+ (cmolc dm-3) 6.45 21.97 -0.08 -0.04 Gaus. 6.46 1.42 0.57 302.99 71.41

Mn (mg dm-3) 61.79 36.64 -0.21 0.05 Exp. 60.69 63.07 415.50 232.10 13.18
Zn (mg dm-3) 2.97 100.93 0.03 0.09 Gaus. 2.93 1.55 7.56 172.39 17.02

2014-
2015

C (g dm-3) 29.03 10.89 0.24 -0.23 M k = 1.5 29.15 6.86 3.32 641.09 67.38
Ca2+ (cmolc dm-3) 5.54 22.44 0.27 0.05 Gaus. 5.54 1.34 0.18 335.26 87.94

Mn (mg dm-3) 78.17 28.98 0.04 -0.01 Exp. 76.80 0.00 479.64 251.12 0.00
Zn (mg dm-3) 2.70 58.74 0.24 0.13 Gaus. 2.69 1.58 0.99 349.69 61.58

2015-
2016

C (g dm-3) 31.43 11.93 0.25 -0.28 Gaus. 31.47 8.90 5.02 437.24 63.96
Ca2+ (cmolc dm-3) 5.65 25.98 0.01 0.01 Exp. 5.67 0.00 2.12 118.08 0.00

Mn (mg dm-3) 87.17 26.83 -0.11 0.07 M K = 1.5 86.42 280.19 255.00 398.76 52.35
Zn (mg dm-3) 5.02 48.32 0.24 0.22 Gaus. 5.14 2.18 4.15 344.94 34.44

CV: coefficient of variation; Coef X (Y): Pearson's linear correlation coefficient for each coordinate (X and Y) with each of the soil chemical properties; 
μ̂ = β0 : estimated mean; φ̂1: estimated nugget effect; φ̂2: estimated contribution; â: estimated practical range; R̂NE : estimated relative nugget 
effect 

(
R̂NE = φ̂1/φ̂1 + φ̂2

)
(%); for properties that showed a directional trend μ̂ = β0 + β1Y1, in which β̂0 (first value of the μ̂ column), β̂1(second value of  

the μ̂ column): estimated values of the parameters of the regression model and Y1 represents the directional trend identified; Exp.: exponential model; 
Gaus.: Gaussian model; M k = 1.5: Matérn model with smoothness parameter k = 1.5.
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Table 5. Descriptive statistics and estimated values of the geostatistical model parameters for the soil chemical properties, referring 
to each harvest year and considering the sample configuration optimized by 70 %

Harvest 
year Property

Descriptive statistics Estimation of the properties by the geostatistical 
model

Mean CV Coef X Coef Y Model μ̂ φ̂1 φ̂2 â ̂R N E

2012- 
2013

C (g dm-3) 32.11 11.25 0.33 0.01 M k = 1.5 -590.68; 
0.0026 5.43 6.45 455.82 45.73

Ca2+ (cmolc dm-3) 6.63 26.19 0.17 0.29 Exp. 6.59 2.21 0.75 573.73 74.57

Mn (mg dm-3) 76.04 25.24 -0.02 0.35 Gaus. -58730; 
0.008 73.00 257.10 301.54 22.11

Zn (mg dm-3) 4.28 61.23 0.29 0.19 Gaus. 4.23 4.42 2.31 252.48 65.66

2013-
2014

C (g dm-3) 31.17 12.29 0.13 -0.15 Exp. 31.05 3.95 10.53 162.42 27.26
Ca2+ (cmolc dm-3) 6.23 24.17 -0.13 -0.02 M k = 1.5 6.19 0.87 1.36 149.90 39.16

Mn (mg dm-3) 62.38 34.39 -0.08 0.08 Gaus. 61.37 186.19 253.23 224.74 42.37
Zn (mg dm-3) 2.99 94.91 -0.01 0.03 Gaus. 2.93 2.87 5.11 195.09 35.96

2014-
2015

C (g dm-3) 29.01 12.91 0.28 -0.03 M k = 1.5 29.08 4.93 9.01 198.61 35.36
Ca2+ (cmolc dm-3) 5.41 26.67 0.20 0.14 Exp. 5.41 1.49 0.57 527.06 72.44

Mn (mg dm-3) 76.52 28.43 0.10 -0.06 M k = 2.5 78.20 270.30 242.40 650.41 52.71
Zn (mg dm-3) 2.80 67.31 0.27 0.05 Exp. 2.88 0.00 3.64 237.55 0.00

2015-
2016

C (g dm-3) 31.52 10.80 0.19 -0.26 Exp. 31.60 7.76 3.72 407.88 67.62
Ca2+ (cmolc dm-3) 5.55 26.15 -0.01 0.08 Gaus. 5.56 1.35 0.72 234.96 65.22

Mn (mg dm-3) 86.28 28.59 -0.13 0.10 Exp. 87.13 202.89 393.03 452.40 34.05
Zn (mg dm-3) 4.98 45.11 0.30 0.21 Gaus. 5.20 1.99 3.22 356.74 38.16

CV: coefficient of variation; Coef X (Y): Pearson's linear correlation coefficient for each coordinate (X and Y) with each of the soil chemical properties; 
μ̂ = β0 : estimated mean; φ̂1: estimated nugget effect; φ̂2: estimated contribution; â: estimated practical range; R̂NE : estimated relative nugget 
effect 

(
R̂NE = φ̂1/φ̂1 + φ̂2

)
(%); for properties that showed a directional trend μ̂ = β0 + β1Y1, in which β̂0 (first value of the μ̂ column), β̂1(second value of  

the μ̂ column): estimated values of the parameters of the regression model and Y1 represents the directional trend identified; Exp.: exponential model; 
Gaus.: Gaussian model; M k = 1.5; 2.5: Matérn model with smoothness parameter k = 1.5.

Table 6. Estimated values of similarity measures Overall Accuracy (OA), Kappa (Kp) and Tau (T) for comparison between the initial 
sampling configuration and the optimized configurations at 50, 60 and 70 %, for the 2012-2013 harvest years, 2013-2014, 2014-
2015 and 2015-2016

Harvest 
Year Property

50 % 60 % 70 %
OA Kp T OA Kp T OA Kp T

2012-2013

C (g dm-3) 72.05 58.85 65.07 77.48 65.46 71.86 78.26 75.05 72.79
Ca2+ (cmolc dm-3) 25.89 0.01 7.36 56.36 39.04 45.44 60.40 44.26 50.50

Mn (mg dm-3) 71.89 56.12 64.86 83.81 75.41 79.76 85.07 77.55 81.34
Zn (mg dm-3) 76.11 48.59 70.14 77.14 57.45 71.42 75.27 57.95 69.09

2013-2014

C (g dm-3) 66.35 0.01 57.93 70.63 32.60 63.29 81.01 52.11 76.26
Ca2+ (cmolc dm-3) 57.82 36.66 47.28 51.84 28.55 39.80 77.17 61.35 71.46

Mn (mg dm-3) 66.29 46.40 57.86 82.76 68.86 78.45 81.64 68.76 77.05
Zn (mg dm-3) 61.34 38.78 51.68 74.01 58.96 67.51 74.18 58.78 67.73

2014-2015

C (g dm-3) 46.66 21.10 33.32 30.24 0.69 12.80 74.76 45.85 68.45
Ca2+ (cmolc dm-3) 60.37 24.97 50.46 56.40 22.66 45.50 67.01 48.20 58.76

Mn (mg dm-3) 65.25 38.07 56.56 66.66 40.97 58.33 81.97 74.62 77.46
Zn (mg dm-3) 71.44 48.17 64.30 59.91 26.68 49.88 81.19 65.85 76.50

2015-2016

C (g dm-3) 61.27 39.05 51.59 64.80 52.50 56.01 61.70 42.62 52.12
Ca2+ (cmolc dm-3) 61.85 41.11 52.31 75.97 50.82 69.96 82.16 70.05 77.69

Mn (mg dm-3) 56.87 39.30 46.08 68.88 55.04 61.10 81.27 70.75 76.59
Zn (mg dm-3) 73.48 56.33 66.85 84.05 75.53 80.06 83.62 74.02 79.52
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Figure 7. Thematic maps of the soil chemical properties considering the initial and optimized 
sample configuration by 60 % for the harvest years 2012-2013, 2013-2014, 2014-2015, and 
2015-2016.

Figure 6. Thematic maps of the soil chemical properties considering the initial and optimized 
sample configuration by 50 % for the harvest years 2012-2013, 2013-2014, 2014-2015, and 
2015-2016.
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Considering all the optimized sample configurations, the best estimate for the accuracy 
index was observed when comparing the initial sample configurations and those optimized 
at 70 % (Table 6) for most of the soil chemical properties. This result was already expected 
because it contains more sample points than the sample reduction of 50 and 40 %. Thus, 
there was an influence of the sample reduction of the spatial variability.

CONCLUSION
Clustering methods were efficient for the application zones (AZ) definition. For all 
clustering methods, the ideal number of groups was two. Furthermore, considering the 
evaluation criteria, K-means was the best clustering method. Sample configurations 
could be optimized by 50, 60 and 70 % with genetic algorithm (GA). Nonetheless, for 
most cases, when compared with the initial sample configuration, the optimized sample 
configurations presented low or medium accuracy in the estimates of the accuracy 
index. The best estimates, for most of the soil chemical properties, were observed 
comparing the initial sample configurations and the optimized ones in 70 %. Finally, the 
cluster methods integration, EOFs for the description of the spatial-temporal data, and 
optimization method were efficient in generating the optimized sample configurations 
that conserved the spatio-temporal trends observed in the original set data.
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Figure 8. Thematic maps of the soil chemical properties considering the initial and optimized 
sample configuration by 70 % for the harvest years 2012-2013, 2013-2014, 2014-2015, and 
2015-2016.
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