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ABSTRACT: In precision agriculture, accurate delineation of management zones 
and understanding spatial variability of soil properties and crop yields are critical for 
optimizing resource allocation and improving productivity. Spatial variability of different 
environmental factors (soil and plants) is evident in several studies. Associations between 
the texture and chemical properties of the soil and cowpea yield have been tested, but 
a large, unexplained variance of ranges between kriged maps is usually reported. This 
suggests that a deeper exploration into the soil properties of these spatial interactions 
may help develop our understanding on how to reduce the number of soil property maps 
to delineate management zones and simplify interpretation. The main objective of this 
study was to investigate whether factorial kriging analysis can be used as an auxiliar 
variable to cokriging of soil properties and cowpea yield, and what is the potential of 
Spatial Fuzzy c-Means associated with factorial kriging analysis to delineate management 
zones. This study employed factor maps and spatial clustering to classify the cowpea 
field in management zones based on a multivariate and geostatistical analysis using 
soil texture and chemical properties. From Farmer, 66 soil samples were collected at a 
layer of 0.00-0.20 m, at points with a regular spacing of 12 m, at Agropecuária Milênio 
in the municipality of Tracuateua, Pará State, to make the technology applicable to the 
most common data available to farmers. It also used Spatial Fuzzy c-Means to generate 
estimated maps. Only the kriged maps of soil properties were inefficient in delineating 
management zones. Factor maps and Spatial Fuzzy c-Means were efficient in delineating 
the two management zones. Factorial kriging analysis can be used in cokriging to estimate 
soil properties and the cowpea field. The proposed method is a practical tool to delineate 
management zones, performing better and more efficiently compared with soil multiple 
property maps. The optimal number of management zones for cowpea cultivation was 
determined to be two. This encompasses soil management, yield considerations, and 
site-specific choices, all aimed at mitigating the impacts of precision agriculture on high 
productivity.
Keywords: precision agriculture, geostatistics, site-specific management, multivariate 
analysis, Amazon.
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INTRODUCTION
Cowpea (Vigna unguiculata (L.) Walp.), is a grain legume native from Africa and is a 
primary source of protein for millions of people in North and Northeast Brazil and other 
parts of the developing world. Cowpea is a legume crop with enormous nutritional, 
agronomic and economic value (Osipitan et al., 2021; Abebe and Alemayehu, 2022), and 
consequently, researchers are investigating how precision agriculture (PA) can leverage 
the spatial variability of soil properties resulting from the intricate interplay between 
soil characteristics, weather patterns, and management practices to optimize crop input 
management and promote both economic viability and environmental sustainability 
(Ahmad et al., 2021; Karydas et al., 2023). In addition, the studies by Guedes Filho et 
al. (2010) and Lipiec and Usowicz (2018) identified spatial correlations between crop 
yields and certain physical and chemical soil properties, suggesting the potential division 
of the area into distinct land management zones. Thus, it is important to detect areas 
with higher or lower productivity for the sustainable management of crops and localized 
application of fertilizers. While significant research has explored the application of precision 
agriculture (PA) in major Brazilian crops like coffee (Kazama et al., 2021), corn (Rodrigues 
and Corá, 2015; Anselmi et al., 2021), soybean (Umbelino et al., 2018), alfalfa (Rossi et 
al., 2018), sugar cane (Sanches et al., 2019), peach (Oldoni et al., 2019), a recent study 
by Anago et al. (2023) highlights the potential of PA for cowpea in African farms. Their 
stdudy demonstrates how geostatistical tools can be integrated with Diagnosis and 
Recommendation Integrated System (DRIS) to optimize cowpea production.

This technology offers valuable insights for significantly increasing yields of understudied 
Brazilian crops like cowpea, using an appropriate quantity of these inputs (water, energy, 
fertilizers and pesticides). Furthermore, the cowpea transcends its role as a simple food 
source within the Brazilian food chain. It emerges as a crop with remarkable resilience, 
demonstrating an ability to thrive under diverse climatic and soil conditions. Additionally, 
its exceptional efficiency in utilizing fertilizers makes it a valuable asset for sustainable 
agricultural practices. According to Silva et al. (2020), cowpeas are sensitive to extreme 
environmental conditions, requiring specific edaphic and climatic characteristics for 
optimal growth and development. Variations in fertility and nitrogen use efficiency are 
challenges for cowpea; e.g., nitrogen fertilization at sowing can limit biological nitrogen 
fixation in bean cultivation in Brazil, impacting yield due to low soil nitrogen content and 
minimal input from resource-poor farmers (Barros et al., 2018).

Another limitation includes high interannual variability, susceptibility to prolonged droughts, 
and low levels of technification, significantly impacting crop production (Santos et al., 
2021). Furthermore, cowpeas are sensitive to damage caused by diseases, including 
anthracnose, angular leaf spot, common bacterial blight, and rust (Ganascini et al., 
2019). These diseases can significantly impact cowpea production in the country. For this 
reason, management zone delineation in cowpea is important to propose more assertive 
management, thus avoiding production losses.

In PA, it is essential to delineate management zones (MZs) that can express the combination 
of homogeneous factors. The MZs are subdivisions of a field, each characterized by the 
relative homogeneity of crops and/or environmental parameters (Doerge, 1999; Khan 
et al., 2020), which, therefore, differ in the need for specific input treatment rates. 
When it comes to determining MZs based on actual crop growth patterns, yield maps 
are valuable tools in precision agriculture (Georgi et al., 2018). Many approaches have 
been described in the literature for delineating management zones using yield maps 
derived from specific inputs (e.g., fertilization, irrigation, pesticides, yield). However, 
the complex combination of these factors often proves difficult to understand. The most 
usual approaches to determine MZs using yield maps are: 1) the empirical method, which 
uses frequency distribution of yield and expert knowledge to divide the field into three 
or four (Khan et al., 2020); and 2) cluster analysis, such as K-means and Fuzzy C-means  
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(Javadi et al., 2022); and 3) the iterative self-organizing data analysis technique (Yang, 
2020) or 4) determination of management zones from normalized and standardized 
equivalent productivity maps (Suszek et al., 2011; Schenatto et al., 2017). 

Although the methods of empirical classification are simpler, cluster analysis allows for 
greater differentiation between management zones or production classes. Empirical 
methods are used mainly when the target variable (usually yield) is used to create MZs. 
For attributes that are correlated to the target variable for creation of MZs, clustering 
methods are usually used. Castrignanò et al. (2017) successfully combined sensors with 
multivariate geostatistics to determine MZs in an agricultural field. Oldoni et al. (2019) 
were able to delineate management zones in a peach orchard using multivariate and 
geostatistical analyses.

Recently, Gavioli et al. (2016) and Abdelaal et al. (2021) proposed the determination 
of management zones using Fuzzy C-means, spatial correlation analysis, principal 
component analysis (PCA) named as (MULTISPATI-PCA) analysis making them more 
viable for implementation from the viewpoint of field operations. Multivariate analysis 
has advantages over other methods in that many factors can be integrated into the 
analysis (John et al., 2021). In this line, our proposal is to evaluate the potential of the 
method Spatial Fuzzy c-Means (SFCM) to delineate MZs, considering the optimization of 
delineation by spatial factorial analysis.

There is a gap in studies on the management of spatial variability in areas with Cowpea 
that have studied applications of precision agriculture with a multivariate geostatistical 
approach, based on the strategy that takes into account method Spatial Fuzzy c-Means 
(SFCM) and factorial kriging analysis (FKA) (Matheron, 1982).

However, tools as SFCM to determine MZs from multivariate analysis can be used to 
assist applications of PA. We hypothesized that SFCM and factorial kriging analysis (FKA) 
are effective techniques to delineate potential management zones from soil properties 
and cowpea yield. When used with the score’s factors that the explained variance major, 
these techniques may optimize the soil properties maps from ordinary kriging.

This study had two goals: (i) to investigate whether Factors can be applied consistently 
as an auxiliar variable to cokriging of soil properties and cowpea yield, (ii) to investigate 
the potential of integrating fuzzy c-means clustering (SFCM) with factorial kriging analysis 
to delineate management zones based on soil texture and chemical properties using 
soil samples collected from the layer of 0.00-0.20 m, which represents a typical depth 
for agricultural practices in the northeastern region of Pará State, Brazil.

MATERIALS AND METHODS

Description of the study site and field procedures

The experiment was carried out from June to September 2018, in an area belonging to 
the company Agropecuária Milênio, in the community of Fátima, located in Tracuateua, 
Pará State, Brazil. The area is located at 01° 08’ 67” S and 46° 58’ 33” W, in an Latossolo 
Amarelos Álico with medium texture according to the Brazilian Soil Classification System 
(SiBCS) (Santos et al., 2018) and classified as Ferralsol (Dystric Arenic Xanthic), according 
to the World Reference Base for Soil Resources (IUSS Working Group WRB, 2022).

The climate is tropical Awi type, according to the Köppen classification system, with 
high annual rainfall rates, around 2.543 mm, with a short dry season between August 
and December (monthly precipitation around 60 mm) and average annual temperature 
around 27.7 °C.
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The fallow area with evergreen equatorial forest has smooth wavy relief and is used for 
cowpea plantations. It was prepared with mechanical mowing, preferably with a knife roller. 
The remains of plant mass were incorporated into the soil, at a layer of approximately 
0.00-0.20 m, to better protect the soil against surface erosion. The BR3-Tracuateua cultivar 
of cowpea was chosen for this experiment. On July 6, 2018, the seeds were hand-sown 
with a spacing of 0.50 m between rows and a density of 15 plants per linear meter. The 
experiment was conducted in a field (1.2 ha) after one year-fallow, where cowpea had 
been previously grown.

Before the installation experiment, the area had been preserved with natural vegetation. 
Agricultural operations in the field were predominantly mechanized. When the experiment 
started, grain crops were sown directly on natural vegetation, and chemical fertilizers 
and liming had been used for more than a decade.

The area had been cultivated for one year with beans in a conventional system under 
spontaneous vegetation. Weeds were controlled with hand weeding every 15 days. Pests 
and diseases were monitored and controlled weekly, and when necessary, chemical 
control with insecticides and fungicides was used. Cowpea (Vigna unguiculata) was 
planted under natural precipitation conditions and without irrigation. No lime and/or 
gypsum or fertilization were used in this experiment.

Figure 1. Location of the study area in Brazil (a) and Tracuateua (b), and the sampling experimental grid established on the cowpea 
farms, with 66 georeferenced samples (c).
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Sampling scheme and cowpea yield assessment

Soil samples were collected at a layer of 0.00-0.20 m, with the aid of a Dutch auger and 
were collected in a 12 × 12 m, had a total of 66 soil samples georeferenced using a Total 
Station Geodetic Gt2 (Figure 1). At 70 days after emergence, in this geographic position 
were made of all plants that were inside the 3 × 3 m (9 m2) sampling cell corresponding 
to the 66 georeferenced cowpea grain samples (Figure 2a). Cowpea yield was determined 
at the time of harvest and dry grain processing, with humidity corrected to 13 %. Yield 
was calculated using the ratio of weight in kg of the grains obtained in each 3 × 3 m 
sampling cell (Figure 2b) and the area of 9 m2. After that, these data were transformed 
into kg ha-1.

Laboratory analyses

Soil samples were sent to the soil laboratory of the Federal Rural University of Amazon, 
Campus of Capanema, where they were air-dried and passed through a 2 mm sieve to 
obtain air-dried fine soil (ADFS). Chemical analyses (extractable P, K+, Na+, Al3+, Ca2+ and 
Mg2+) and texture analyses (grain size analysis to obtain sand, silt and clay fractions) of 
soil followed the method recommended by Claessen (1997).

Univariate data analysis

Descriptive analysis statistics

Descriptive analysis was applied to the texture and chemical properties of the soil 
and plant attributes (grain weight/hectare) were evaluated by descriptive statistics 
(minimum, maximum, mean, standard deviation, coefficient of variation, coefficient of 
skewness and kurtosis and normality test). The dispersion classification was evaluated 
by using the Warrick and Nielsen (1980): low variability (CV <12 %), average variability  
(12≤ CV ≤62 %) and high variability (CV >62 %).

Geostatistical analysis of soil properties and Cowpea yield

Geostatistical analysis is a powerful tool for evaluating the spatial relationships between 
soil and plant variables and covariables. The geostatistical analysis was based on the 
regionalized variable theory, using the variables obtained from the soil and cowpea yield.

Mathematical models were adjusted to experimental semivariograms to analyze the 
spatial dependence structure of the texture and chemical properties of soil and cowpea 
yield. The selection of the best model was based on (1) minimizing the sum of the squared 

Figure 2. Overview of the grid sampling (a) and cell sampling for measure of cowpea yield (b).
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residuals; (2) maximizing the coefficient of determination (R2), and taking into account 
the assumption of stationarity of the intrinsic hypothesis (Matheron, 1963), estimated 
through equation 1.

in which: N(h) is the number of pairs of points; Z(xi) and Z (xi + h) are regionalized 
variables separated by a distance h. 

The semivariogram is represented by the graph of γ(h) versus h. To refine our mathematical 
model, we adjusted it to the calculated values of γ(h). This process allowed us to estimate 
the parameters of the theoretical semivariogram model: the Nugget effect (C0), the Sill 
(C0 + C1), and the Range (a). We evaluated four different models: spherical, exponential, 
Gaussian, and linear. All variographic analyses were conducted using GS+ Version 9.0 
(Robertson, 1998).

After obtaining the experimental semivariogram, a permissible theoretical mathematical 
model was selected to represent it. Then, using the parameters of this theoretical model, 
the values of soil properties and Cowpea yield at a specific unsampled geographic position 
in the study area were estimated using ordinary kriging (OK) from soil properties and 
cowpea yield, as demonstrated in equation 2

in which: Z(x0) is the estimate from kriging at the point x0; Z(xi) is the values measured in 
xi, i = 1, 2,..., N; λi is the kriging weights calculated based on the adjusted semivariogram, 
assigned to neighboring values z(xi) to estimate Z(x0).

Multivariate data analysis

Factorial analysis (FA)

The dataset was analyzed by correlation matrix to evaluate the relationships between all 
soil properties before to apply the multivariate analysis. Factor analysis is a multivariate 
statistical method extensively used to reorganize the soil properties into fewer underlying 
factors (also called common factors) to retain as much information as possible as contained 
in the original soil properties. 

In contrast to the original soil properties, the factors are independent of each other. 
Substituting these factors for the original soil properties can effectively simplify a large 
dataset. Factors are derived through an eigenvalue analysis of the correlation matrix, 
with factor loads and factor scores serving as the primary measures of FA.

The first step involves standardizing the raw data and computing a correlation matrix 
of the variables based on these standardized variables. The second step is to estimate 
the factor loads, which indicate the degree of association between the factor and the 
variables. Factor loads range from -1 to +1, with higher absolute values indicating a 
stronger relationship between the factor and the variable. Additionally, Liu et al. (2003) 
suggested categorizing factor loads as strong, moderate, and weak, corresponding to 
absolute load values in the ranges of >0.75, 0.75–0.50, and 0.50–0.30, respectively. 

The last step linearly transforms the factors associated with the initial set of loads per 
factor rotation to maximize the variable variances and to obtain a better interpretable 
loading pattern. The four factors can be used to extract other optimized vectors. The 
latter were obtained using the principal components by means of axis rotation. In this 

       ˆ 1 Var
2

    i iY h Z x Z x h
N h

Eq. 1

   0
1

ˆ


 
n

i i
i

Z x λ Z x Eq. 2
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study, varimax rotation was used. The factor scores are calculated for each individual 
case to represent the contribution of each factor in each case. 

The FA was applied to determine the factors that control the regional yield of cowpea 
and the resulting factors in the main texture and chemical properties of the soil. The 
factor was extracted by principal components, and only eigenvalues greater than one 
were considered (Kaiser, 1958). Factorial load matrix was rotated to obtain factors that 
were not correlated by varimax rotation. In this study, the scores of the common factors 
of the variables were considered: P, Al3+, K+, Na+, Ca2+, Mg2+, Sand, Silt, and Clay.

Multivariate geostatistical modelling

Geostatistical analysis is a powerful tool for evaluating the spatial relationships between 
soil and plant variables and covariables. Geostatistical analysis was based on the 
regionalized variable theory, using the variables obtained from the soil and cowpea yield. 
Then, an analysis was carried out based on FA scores to classify the interrelationship of 
the variables measured. Multivariate geostatistical methods combine the advantages 
of geostatistical techniques and multivariate analysis, incorporating spatial or temporal 
correlations and multivariate relationships to detect and map different sources of spatial 
variation at different scales. 

Several researchers (Aggelopooulou et al., 2013; Buttafuoco et al., 2015) have described 
multivariate geostatistical methods in detail for the delineation of MZs. Geostatistics 
provides a semivariogram of data within a spatial dependency structure, including 
spatial and temporal covariance functions. As expected, these semivariogram models 
are called spatial or temporal structures and are defined in terms of the correlation 
between any two separate points spatially or temporally. Semivariograms provide a 
means of quantifying the commonly observed relationship between sample values and 
sample proximity (Lin et al., 2008). The second-order stationarity semivariogram C(h) 
of the regionalized variable, Z(x), is defined as:

in which: h is  the distance of separation between pairs of points; Var represents the 
variance between tail and head between pairs of points; Z(xi), and Z(xi + h ) are regionalized 
variables separated by a distance h.

An experimental semivariogram for the lag interval distance in class h, is given by 
equation 4.

in which: Ŷ(h) are the semivariance values ​​for the distance h; N(h) represents the number 
of pairs of points separated by the lag distance h; Z(xi). Similarly, the spatial correlation or 
cross semivariograms (ŷαβ) between two variables can be defined according to equation 5.

in which: α and β represent the different regionalized variables, specifically the factor 
scores from the Factorial Kriging Analysis (FKA) and cowpea yield. The experimental 
cross semivariogram (ŷαβ(h)) can be calculated using equatoin 6.
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in which: S is the number of spatial scales, bu
αβ are the coefficients associated with each 

spatial scale u, and bu(h) represents the elementary semivariogram functions for each 
scale. This multivariate linear spatial model enables efficient regionalization of the set 
of random functions, allowing for the manipulation of complex, multivariate spatial data 
(Wackernagel, 2003).

A set of second-order stationarity regionalized variables, {Zi(x); i=1,…,N}, can be 
decomposed into a set of spatial components, {Zi

u(x); i=1,…,N; u=1,…,S}, according 
to equation 7.

in which: i represent the different regionalized variables; N(h) is the number of regionalized 
variables; i represents the different spatial scales; and S is the dominion area; mi is E[Zi(x)].

Then, the set of spatial components Zi
u can be decomposed into sets of spatially unrelated 

factors (Goovaerts, 1992; Wackernagel, 2003). During the modeling of the experimental 
semivariogram, the coefficients of the nugget effect (C0), the sill (C0+C1), and the range 
(a) were menores measured. The spherical, exponential, and Gaussian models were 
also tested.

The best model was selected based on several criteria: 1) These criteria included linear 
and angular regression coefficients; 2) Additionally, the regression coefficient between 
observed and estimated values was considered; 3) The residual sum of squares (RSS) 
was used to assess model fit and finally; and 4) we included linear and angular regression 
coefficients from cross validate.

Ordinary kriging of factors scores

After modeling the direct and cross semivariograms, interpolation was performed using 
ordinary kriging (OK) using the factors scores from FA. This methodology consists of 
performing a weighted average of the neighboring samples (Equation 6), with the weights 
of each neighboring sample determined by semivariance as a function of h (Equation 2), 
resulting in an estimate without trend and with minimum variance (Matheron, 1963), 
according to equation 8.

in which: Ẑ(x0) is the estimative from OK in the point not sampled at position (x0) ; N is 
the number of values used for estimation; Ẑ(x1) is the value observed in point ii, in which 
i=1,2,...n; and λi is the weight associated with each value and is the value observed at 
point i.

Co-kriging

Co-kriging (CK) is a method to estimate that extends ordinary kriging by incorporating 
additional observed variables, known as covariates. These covariates are often correlated 
with the variable of interest and are used to enhance the accuracy of the interpolation. 
Unlike regression and universal kriging, co-kriging does not require the secondary 
information be available at all prediction locations. Covariate can be measured at the 
same points as the target variable (co-located samples), at different points, or both. The 
CK is commonly used when the covariate is less expensive to measure than the target 
variable.

The value Z0
*, which is unknown, can be expressed as a linear combination of N values 

from two or more regionalized variables. In the case of two-variable co-kriging, where 
the input data are only available at wells, equation 9 is the general equation used.

   1
  S u

i i iu
Z x Z x m Eq. 7

     0 1
ˆ


 N

i ii
Z x λ x Z x Eq. 8
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in which: z0* represents the predicted value of Zi at location 0. The values Zi,…,Zn represent 
the actual measurements collected at n nearby locations. Additionally t1,…,tm are secondary 
data at n nearby locations. Finally, λ1,…,λn and β1,…,βn are the weights that need to be 
calculated to perform CK effectively.

The objective of CK in this study is to preliminarily assess the existing spatial correlation 
between the variables (factors) and soil properties. This correlation should be substantial 
to ensure the consistency of interpretations for spatial multivariate data in delineating 
management zones.

Assessment factors as auxiliar to cokriging 

To assess the use of factors as an auxiliary covariate, the existence of a spatial dependence 
structure of the factors was evaluated by modeling of direct semivariograms and cross 
semivariogram using factors to check the potential use of the factors for cokriging 
estimates with the factors for estimation of soil properties and cowpea yield with higher 
loads. We leveraged kriging to link the insights from factorial analysis with the spatial 
patterns revealed by geostatistics. This involved using only factor scores with eigenvalues 
greater than 1. The potential of the regionalized factors for estimating cowpea yield was 
assessed by calculating the correlation between the factor scores maps and the cowpea 
yield maps. These correlations were then visualized using a scatter plot generated with 
SAGA GIS 2.3.

Yield-factors-based management zones using Spatial Fuzzy c-Means (SFCM)

The SFCM approach to delineation of potential management zones-based soil properties 
uses a kriged map (composite R, G, B) from the fusion of three kriged maps based on the 
scores of the principal components, and this fusion returns only one map, reducing the 
dimensionality. However, the RGB stack maps were classified by Fuzzy C-Means (FCM) 
clustering algorithm, which was first introduced by Dunn (1973) and later improved 
by Bezdek (1981). Let X = x1, x2,..., xn are the n pixels of the image to be partitioned 
into C clusters, where xj represents a feature of a vector. The algorithm is an iterative 
optimization process that minimizes the cost function defined by the equations 10 and 11.  

in which: dij is the distance between ith data and jth cluster center; C represents the 
number of clusters; m is the fuzziness index; µij is the fuzziness index; n is the number 
of data points; and Cj represents the jth cluster center.

Considering the tendency of neighboring pixels to exhibit similar values, there is a higher 
probability of them being assigned to the same cluster. To harness this spatial information, 
the following steps are: STEP 1 - Selection of data for grouping; STEP 2 - Standardize 
the columns; STEP 3 - Use a non-spatial method to select appropriate parameters  
(k, m and β); STEP 4 - Use the selected parameters to determine the alpha value for the 
spatial method; STEP 5 - See Groups, if all obtained groups are stable; STEP 6 - Assess 
classification quality and spatial consistency; STEP 7 - Investigate the results of spatial 
and non-spatial classification.
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Yield-based management zones

We located the MZs derived from the cowpea yield map using the methodology adopted 
by Milani et al. (2006). We assumed the cowpea yield map could cluster in three zones 
according to your yield obtained from the pixel values. However, the pixels were reclassified 
according to criteria: Low, Medium and High, as shown in table 1.

Criteria for assessing Management Zones based on SFCM

Following the spatial fuzzy c-means classification, two raster stacks, each containing 
three factor layers as RGB stack images, were used as input. The first stack utilized F3, 
F2, and F1 factors (R = F3, G = F2, B = F1), while the second employed F4, F2, and F1 
factors (R = F4, G = F2, B = F1). These factor selections were based on their highly 
explained total variance. Subsequently, we employed five different criteria to evaluate 
potential management zones.

1.	 Variance analysis (ANOVA) between management zones was obtained according to 
Milani et al. (2006) from Cowpea Yield.

2.	 The uncertainty of SFCM using the Local Indicators of Spatial Association-LISA called 
local Moran’s I statistic (Anselin, 1995) using R package “Geocmeans” (Jérémy and 
Apparicio, 2021) in R 4.1.2 environment (R Development Core Team, 2021). Moran 
index from RGB stack imageries as described above. When the results are negative, 
values represent the pixels with errors that decrease local accuracy, and high positive 
values indicate good local accuracy.

3.	 Explained inertia (ei): If the values are close to 1, it indicates a good classification 
by SFCM.

4.	 The silhouette index, proposed by Rousseeuw (1987), is a measure used to assess 
the quality of pixel classification. Values close to 1 indicate that pixels are well 
classified, meaning they are closer to objects of the same class than to objects of 
different classes.

5.	 Spatial inconsistency: values near to zero indicate a good classification.

The overall workflow is illustrated in the flowchart presented in figure 3.

RESULTS AND DISCUSSION

Descriptive statistics

Table 2 shows that K+, Na+, Al3+, clay, and Cy have normally distributed after a Shapiro–Wilk 
test of normality with non-significant skewness. Although the occurrence of non-normality 
to P, Ca2+, Mg2+, sand, and silt, it is common for data obtained from nature (field) 
(Webster, 1985).

Soil texture class was defined as a sandy soil and according to the Pará State’s handbook 
for fertilization (Brasil et al., 2020), the means of soil chemical properties content were 
low in the study area. All soil properties had medium coefficients of variation between 
20.73 to 62.00, except sand that had 5.82, indicating low variability according to Warrick 
and Nielsen’s criteria (1980).

Table 1. Criteria for defining management zones based on a cowpea yield map

Management zones Management requirements Zones

Low yield zone <95 % in relation to medium Low

Medium yield zone 95 % Medium yield 105 % Medium

High yield zone <105 % in relation for medium High
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Figure 4 shows the negative values of correlations between Al3+ with Ca2+ and Mg2+, 
of -0.72 and -0.62, respectively, suggesting divergent trends of ions in the soil. These 
correlations are common in tropical acidic soils (Cahyono et al., 2020). The value of  
r = 0.67 between Ca2+ and Mg2+ suggests a medium and positive relationship between 
them. Exchangeable potassium had a similar relationship with Mg2+ and Na+, with  
r = 0.54 and r = 0.58, respectively (Figure 4). Others properties have slow correlations, 
and the places in white color in figure 4 did not show a significant correlation at (p<0.01). 
The negative values of correlations between sand with clay and silt were -0.45 and -0.34, 
respectively. Gubiani et al. (2021) found correlation values similar to our results.

Factorial analysis

Factor analysis (FA) for soil properties showed that the first four factors are those 
whose eigenvalues are greater than 1, extracting cumulative explained variance of  
79.71 % of the studied soil properties’ variability as follows: 31.61, 19.05, 16.17 and 
12.88 % for factors: F1, F2, F3 and F4, respectively (Table 3). This shows these four 
factors have potential to explain the 9 original soil properties. The results obtained 
here are in harmony with those from John et al. (2021), who found F1 to F5 could 
describe and explain approximately 78 % of the total variability of soil properties.  

Figure 3. Flowchart showing the sequence of methodologies applied for delineation of potential management zones for cowpea by 
factorial kriging and Spatial Fuzzy c-Means (SFCM) of yield and soil chemical and texture properties.
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Table 3 shows that Ca2+, Mg2+ and Al3+ were strong correlated with F1 with (r = -0.78;  
r = -0.81, and r = 0.85), respectively. On the other hand, K+ and Na+ strongly correlated 
with F2, with r = 0.90 and r = 0.72, respectively. While F3 was correlated with silt  
(r = -0.71), and F4 was correlated with clay (r = -0.75). Sánchez-Navarro et al. (2021) 
reported a positive correlation between Ca2+, Mg2+, P and K+ and F1 in their study of 
nutritional diagnosis for cultivation of Vigna unguiculata.

Factor F1 can explain the effect these nutrients as factors limiting the crop yield in 
relationship with liming practices that provide exchangeable ions Ca2+ and Mg2+, in addition 
to the antagonistic and harmful effect of Al3+ (Table 3). These cations contributions to F1 
can be explained due the intensive application of synthetic fertilizers, which provides 
additional spatial variability of soil chemical properties. Cai et al. (2019) reported the 
increased addition of synthetic fertilizers can explain soil acidity.

The F2 also had chemical properties (cations: K+ and Na+) similar to those observed for 
F1. Moreover, our findings showed that soil chemical properties can explain 50.66 % 
of data variance (F1 + F2). Meanwhile, soil texture (Silte and Clay) explains 29.05 % of 

Table 2. Descriptive statistics of soil properties and cowpea yield (n = 66)

Properties Min Max Mean SD CV Sk Kurtosis p-value
Cy (kg ha-1) 10.76 110.19 64.97 20.36 31.34 -0.20 0.42 >0.100*
P (mg dm-3) 0.01 0.09 0.04 0.02 38.59 0.56 -0.50 0.040
K+ (cmolc dm-3) 0.00 0.17 0.07 0.04 55.33 0.29 -0.01 >0.100*
Na+ (cmolc dm-3) 0.00 0.02 0.01 0.01 45.57 -0.56 0.04 >0.100*
Al3+ (cmolc dm-3) 0.38 1.19 0.87 0.18 21.22 -0.62 0.11 0.098*
Ca2+ (cmolc dm-3) 0.08 1.15 0.35 0.22 62.50 1.68 2.92 <0.010
Mg2+ (cmolc dm-3) 0.07 0.60 0.19 0.10 51.96 1.51 3.58 <0.010
Sand (g kg-1) 505.00 892.00 835.29 48.62 5.82 -5.00 33.11 <0.010
Silt (g kg-1) 8.00 171.00 49.56 21.39 43.16 2.90 15.50 <0.010
Clay (g kg-1) 60.00 160.00 110.00 22.80 20.73 0.19 -0.21 >0.100*

Min: Minimun; Max: Maximum; Cy: Cowpea yield; SD: standard deviation; CV: coefficient of variation; Sk: Skewness; p-value: * normal distribution by 
the Shapiro-Wilk test when detected p-value>0.05.

Figure 4. Correlogram based on Pearson correlation (r) between soil properties. Black and red 
colors symbolize positive and negative correlations, respectively.
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data variance (F3+F4). Factorial analysis reduces the dimensionality of multiple maps 
from soil chemical properties. Oldoni et al. (2019) also found a reduction in the variability 
of soil using geostatistical and multivariate analysis. Our findings support our initial 
hypothesis, demonstrating the potential utility of interpreting spatial variability in the 
nutrient index for cowpea production. This aligns with the study of Anago et al. (2023), 
who highlighted the promise of similar approaches in African contexts.

Geostatistical analysis

The modeling of the cross semivariograms indicated a significant and positive spatial 
correlation between Ca2+ and Mg2+ with a negative correlation between Al3+ and F1 
(Figures 5b, 5d, and 5h). The cross semivariograms indicated a positive spatial correlation 
between K+ and F2 (Figure 5j). The cross semivariograms indicated negative spatial 
correlation between silt and F3 (Figure 5o), and this result indicated that F1, F2, and F3 
have the potential to be a useful auxiliary variable for the co-kriging method to improve 
the forecast accuracy of these soil properties and cowpea yield. Arreño et al. (2017) 
reported the cokriging technique is superior to kriging technique in spatial prediction, 
given the use of multivariate spatial data.

Soil Ca2+ semivariogram provides a description of its spatial dependence and provides 
some insights into possible processes that affect its spatial distribution. A spherical 
model fits well the experimental semivariogram, with a high coefficient of determination  
(R2 = 0.90), a low C0 / (C0 + C1) ratio of 10.33 %, and an effective range of 70 m. The spatial 
modeling shown in figures 5a and 5b, in which the Ca2+ cross semivariogram with F1, 
was also well adjusted by an exponential model, with a high coefficient of determination 
(R2 = 0.94), low C0 / (C0 + C1) ratio of 10.32 % and effective range of 60 m (Figure 5b). 

For Mg2+, there was a high coefficient of determination (R2 = 0.90), an average  
C0 / (C0 + C1) ratio of 48.81 %, and an effective range of 55 m. The cross Mg2+ semivariogram 
with F1 was also well adjusted by a spherical model, with a high coefficient of determination 
(R2 = 0.81), average C0 / (C0 + C1) ratio of 44.53 %, and effective range of 60 m  
(Figures 5c and 5d). For the sample spacing of this study, no spatial dependence structure 
could be found for Na+, and no spatial dependence was found in the modeling of the 
cross semivariogram between sand and clay with factor 4. However, with factors 1, 2, 
and 3, kriged maps can be made with these variables that have higher factor loads 
using these first three factors as auxiliary variables due to the cross semivariograms 

Table 3. Correlation coefficients between soil properties and each of the factors scores
Factor 1 Factor 2 Factor 3 Factor 4

Eigenvalues 2.84 1.71 1.45 1.15
Cumulative variance (%) 31.61 50.66 66.83 79.71
Explained variance (%) 31.61 19.05 16.17 12.88
Correlations
P -0.19 -0.07 0.58 -0.12
K+ -0.50 0.72 -0.27 -0.08
Na+ -0.12 0.90 -0.13 0.10
Al3+ 0.85 0.28 -0.01 0.03
Ca2+ -0.78 -0.42 -0.15 -0.23
Mg2+ -0.81 0.08 -0.20 -0.42
Sand -0.44 0.16 0.66 0.31
Silt -0.07 -0.29 -0.71 0.49
Clay 0.57 0.03 -0.12 -0.75

Al3+ + Ca2+ + Mg2+ K+ + Na+ Silt Clay
Chemical properties Soil texture
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(Figures 5b, 5d, 5h, 5j,  5m and 5o). This indicates the potential to create kriged maps for 
factors 1, 2, and 3 by incorporating these correlated variables as auxiliary information. 
By leveraging the spatial relationships between these factors and other variables, we 
can create robust kriged maps for factors 1, 2, and 3, potentially leading to effective 
delineation of management zones.

Our results reveal a crucial finding: a spatial dependence structure exists between the 
most influential factors and the strongly correlated soil properties. This allows us to 
leverage just three maps of the first factor scores (instead of ten individual soil property 
maps) to effectively explain these properties spatial continuity. This not only simplifies 
the process of delineating management zones but also identifies the most coherent and 
practical approach for this task. Consequently, we can gain a deeper understanding of 
the spatial patterns in soil properties that are simultaneously linked to cowpea yield. The 
conclusion provided by Anago et al. (2023) strongly suggests that this ease interpretation 
of spatial variability is crucial in nutrient management in cowpea production. 

Exchangeable Ca2+ and Mg2+ were the nutrients that had a direct negative and significant 
effect on yield (Figures 4a and 4c), indicating these elements would also be high in the 
soil in the area of low yield (in red), although the average content is within the range 
of 0.10 to 0.72 cmolc dm-3 and 0.11 to 0.29 cmolc dm-3 - considered as suitable for the 
crop (Malavolta, 1987). 

The Ca2+ and Mg2+ show an antagonistic behavior for Al3+. Although these ions are the 
cause of toxicity. In this study, cowpea was resistant to Al3+, because in the zone with 
the great content, this ion had higher Cy values. According to Yang et al. (2013), the 
observed behavior can be explained by Vigna unguiculata tolerance to high concentrations 
of this metal, owing to its complexation with organic acids exuded by the root system 
and because of the plant genotype, which can promote the ability to adapt to adverse 
physical and chemical conditions, minimizing problems caused by low yield in acidic soils. 

Therefore, the microrelief (that is, small variations in the relief) governs the flow of water, 
modifying the properties of the soil, e.g., texture and structure, which, in turn, govern 
pore distribution. Therefore, they dominate factors such as leaching. O’Geen (2013) 
clearly described, in detail, the influence of texture and structure on the relationship 
between soil moisture, soil water flow, and soil properties. In fact, although there was 
no evidence of similarity in the spatial continuity pattern between soil properties maps 
(Figures 6a, 6b, 6c, 6d, 6e, 6f, 6g, and 6h). This results in contradictory evidence to our 
hypothesis while proposing to delineate management zones. However, when these maps 
are integrated using factorial analysis and SFCM, this hypothesis is reasonable since it is 
possible to see the clustering of these maps in primaries MZs (Figures 6n and 6o). Figure 
6n and 6o show the probable distribution of MZs using RGB stack maps from F1, F2 and 
F3, because showed in blue the zones that could be explained by F1, and in green the 
zones that could be explained by F2, and in red the zones that F3 could explain.

However, these results demonstrate the potential of FKA that may be directly applied to 
obtain MZs integrating three scopres maps from FKA representative of  soil properties 
because there is possible to reduce the multiple maps with different rangers for one 
simple RGB stack maps multivariate. It not escaped our notice that is the first insight 
of potential tool to extract information’s not obtained by geostatistics modelling using 
univariate data. Morari et al. (2009) working with multivariate geostatistics in delineating 
management zones, reported that multivariate geostatistics provides local information 
which may be useful for site-specific management.

There was a strong spatial pattern of F1 with Cy (Figures 6i and 6p); although it explains 
28 %, it can be used instead of three maps of soil properties (e.g., Al3+, Ca2+, Mg2+). This 
shows the potential of combining geostatistics with factor analysis, as this can help to 
interpret the spatial continuity of soil and plant attributes. This indicates that the spatial 
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Figure 5. Direct and cross experimental semivariograms (black points) and semivariogram models (blue solid line) for soil and yield 
variables and first four principal components. Model: Sph – Spherical; C0 - nugget effect; C - Contribution; C0 + C - Sill; RSS - residual 
sum of squares; R² - coefficient of determination of the cross validation. Direct semivariogram of Ca2+ (a); cross semivariograma 
between Ca2+ and Factor 1 (b); direct semivariogram of Mg2+ (c); cross semivariograma between Mg2+ and Factor 1 (d); direct 
semivariogram of Cowpea yield (e); direct semivariogram of Factor 1 (f); direct semivariogram of Al3+ (g); cross semivariograma 
between Al+ and Factor 1 (h); direct semivariogram of K+ (i); cross semivariograma between K+ and Factor 2 (j); direct semivariogram 
of Factor 2 (l); direct semivariogram of silt (m); direct semivariogram of Factor 3 (n); cross semivariograma between Silt and Factor 
3 (o); and direct semivariogram of Factor 4 (p).
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variability of Factor 1 can be used to provide further insights into the causes and effects 
of high and low yield more accurately and into adequate site-specific management of 
cowpea fields. These results are consistent with the findings reported by Oliveira et 
al. (2019), i.e., the association of PCA and cluster analysis with the basic texture and 
chemical properties of the soil is perfectly feasible for the definition of management 
zones. However, the delineation of management zones based in factorial analysis confirm 
our hypothesis that MZs can be delineated by reduction the number of soil properties 
indicators from multivariate analysis.

Figure 6. Predicted maps: Al3+: aluminium (a); Ca2+: calcium (b); Mg2+: magnesium (c); K+: potassium (d); P: phosphorus (e); sand 
(f); silt (g); clay (h); factor 1 (i); factor 2 (j); factor 3 (l); factor 4 (m); RGB stack from Factor 1,2 and 3 (n); RGB stack from Factor 1, 2  
and 4 (o); management zones based on cowpea yield (p); management zones based on spatial fuzzy c-means from Factor 1, 2 and 3 (q); 
management zones based on spatial fuzzy c-means from Factor 1, 2 and 4 (r); uncertainties of management zones by results of local 
Moran index from Factor 1, 2 and 3 s); uncertainties of management zones by results of local Moran index from factor 1, 2 and 4 (t).
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Potential of kriged maps of factor scores for estimation of cowpea yield

The potential of the factors to estimate cowpea yield was assessed on the basis of the 
correlation between the raster image, graphically represented by using a scatter plot 
with SAGA 2.3. There is a linear negative relationship between cowpea yield and F1 with  
R2 = 0.61 (Figure 7a). It means the higher and the more negative the values of the scores 
of F1, the greater the cowpea yield. There is a linear positive relationship between cowpea 
yield and F2 with R2 = 0.48 (Figure 7b). Our study found a weak linear correlation between 
cowpea yield and factor 3 with R2 = 0.17 (Figure 7c). There is also no linear relationship 
between cowpea yield and factor 4 with R2 = 0.00 (Figure 7d).

However, the most important factors for the prediction models were F1, F2 and F3. These 
results support our hypothesis that the performance factors for the prediction Cy is crucial 
for many practical applications and supports the use of factors to delineate MZs. Thus, 
this proves that the use of these factors is useful to understand the spatial continuity of 
yield as related to soil properties. Bevington et al. (2019) concluded that the principal 
component and FKA are efficient in regression model to predict dependent variables from 
independent variables.

In general, all the first three factors have a degree of spatial correlation with yield, indicating 
that the latter can be estimated, since these factors provide information on the soil properties 
responsible for the spatial variability of yield. However, these results confirm our hypothesis 
that the FKA associated with SFCM has a high potential to assist in the delineation of 
MZs. This is consistent with the results reported by Aliyu et al. (2020), who showed that 
the combination of geostatistics with principal component analyses and K-means cluster 
analyses was successful in the delineation of soil nutrient management zones.

Figure 7. Scatter plot correlation between interpolated maps of cowpea yield with factors: 1, 2, 3 and 4. Correlation between 
interpolated cowpea yield and factor 1 (a); correlation between interpolated Cowpea yield and factor 2 (b); correlation between 
interpolated Cowpea yield and factor 3 (c); correlation between interpolated Cowpea yield and factor 4 (d).
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Evaluation of management zones by cowpea yield map

The potential management zones (MZs) identified from the cowpea yield map were 
significantly different, as determined by ANOVA and Tukey’s tests. These MZs were 
categorized as low, medium, and high potential zones (Figure 8). Our findings are similar 
to those of Schenatto et al. (2017), who delineated MZs for soybean yield using ANOVA. 
These MZs are valuable for assessing their relationship with soil-based MZs.

Evaluation of management zones by Spatial Fuzzy c-Means (SFCM)

Figures 6a to 6h demonstrate that soil property maps alone are insufficient for delineating 
management zones (MZs). This limitation is primarily due to the high variability among 
soil properties and the absence of consistent spatial patterns. These challenges become 
even more pronounced when multiple maps are integrated, especially at varying spatial 
scales, underscoring the complexity of accurately defining MZs. See in figures 6a to 6h 
that the eight soil property maps were reduced to four factors maps (figures 6i to 6m), 
and these were reduced to just two RGB stack maps, and finally, for the management 
zone map. The major drawbacks of these multiple kriged maps are different ranges result 
in distinctly different management zones (Peralta and Costa, 2013). When considering 
the four factor maps (Figures 6i to 6m), a reduction in dimensionality is evident. While 
some zones can be identified, precise interpretation for effective application in precision 
agriculture may be challenging. This suggests the need for an integrated approach, 
combining multiple factors into a single raster map, which we call the RGB stack. Evidence 
supporting this interpretation is improved by integrating factors maps, as can be seen 
in figures 6n and 6o, and such the datasets with nine soil properties maps were reduced 
for two maps. These results provide the possible explanation for when each factor had 
a major influence. In figure 6n and 6o, the places of blue color represent the potential 
of F1 to explain the effect and causes of Al3+, Ca2+ and Mg2+. The places of green color 
represent the potential of F2 to explain the effect and causes of K+ and Na+, which repeat 
for the other factors (Figures 6n and 6o enlarged).

Figures 6q and 6r show that RGB stack maps were classified into two zones by SFCM. This 
result is consistent because it has been the practical solution to seek a balance between 
the total variance and the number of zones instead of the best number of zones. Xiaohu 
et al. (2016) proposed a similar strategy for delineating the optimal number.

Figure 8. Box-plot and the results of one-way ANOVA analysis between the zones of cowpea 
yield. Management zones (MZs) with high productivity (a), management zones (MZs) with medium 
productivity (b) and management zones (MZs) with low productivity (c). Different letters represent 
a significant difference at p<0.05.
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Figures 6s and 6t show the uncertainty between zones by Moran’s I statistic values. 
Places with negative values in color blue represent the pixels with errors that decrease 
the local accuracy of SFCM. This observation is consistent with the MZs defined by Cy; 
there is a greater variability due to these places being transition zones. Anselmi et al. 
(2021) described that the variance between MZs can be explained by variance in soil 
properties.

Table 4 presents the performance of the Spatial Fuzzy c-Means (SFCM) method in delineating 
management zones (MZs). The results indicate that the optimal clustering occurs when 
k = 2, as evaluated using multiple statistical and spatial assessment tools. For the RGB 
stack derived from factors 1, 2, and 3, the following metrics were obtained: Moran’s I 
index (I = 0.97), explained inertia (EI = 0.39), silhouette index (SI = 0.65), and spatial 
consistency (SC = 0.08). These results confirm the ability of the sFCM method to define 
two distinct MZs based on this specific RGB configuration.

Similarly, when using the RGB stack derived from factors 1, 2, and 4, two MZs were 
also identified. The performance metrics for this configuration were comparable, with 
Moran’s I index (I = 0.97), explained inertia (EI = 0.28), silhouette index (SI = 0.59), 
and spatial consistency (SC = 0.06). These values highlight slight differences in spatial 
variability and clustering quality between the two RGB stacks, reflecting the influence 
of the selected input factors on the clustering process.

Overall, the RGB stack derived from factors 1, 2, and 3 demonstrated slightly higher 
clustering quality (based on the silhouette index and spatial consistency) compared to 
the stack from factors 1, 2, and 4. However, the Moran’s I index remained consistent 
(I = 0.97) across both configurations, indicating similar spatial autocorrelation in the 
clustering results. These findings underscore the robustness of the SFCM method in 
delineating MZs and emphasize the importance of selecting appropriate input factors 
to enhance clustering performance. However, the better cluster numbers (MZs) were 
two, as indicated by high Silhouette index values, slow Explained inertia and Spatial 
inconsistency values. However, we obtained better classification performance in two 
zones (Table 4, and Figures 6q and 6r). Therefore, the farmer needs to be more assertive 
about the cluster number and spatial uncertainty to obtain satisfactory MZs for adopting 
technologies for sustainable farming systems.

CONCLUSIONS
This study demonstrated the effectiveness of integrating Spatial Fuzzy c-Means (SFCM) 
with factorial kriging analysis to delineate management zones based on soil texture and 

Table 4. Spatial diagnostic for the optimal number of clusters (MZs) with the Moran I index, explained inertia, silhouette index and 
Spatial inconsistency applied in RGB stack maps from Factors: Spatial Fuzzy c-Means (SFCM), MZs: Management Zones

Cluster Performance Index SFCM Intepretation Source Factors Numbers 
of MZs

Moran I index (I) 0.97 indicated close to perfect clustering  Anselin (1995)

F123 2
Explained inertia (EI) 0.39 indicated a medium clustering Rousseeuw (1987

Silhouette index (SI) 0.65 indicated clusters well defined Rousseeuw (1987)

Spatial inconsistency (SC) 0.08 indicated strong consistency Zhang and Wu (2004)

Moran I index 0.97 indicated close to perfect clustering  Anselin (1995)

F124 2
Explained inertia 0.28 indicated a medium clustering Rousseeuw (1987

Silhouette index 0.59 indicated clusters well defined Rousseeuw (1987)

Spatial inconsistency 0.06 indicated strong consistency Zhang and Wu (2004)
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chemical properties in the northeastern region of Pará State, Brazil using soil samples 
collected from a layer of 0.00-0.20 m, representing a typical layer for agricultural practices 
in the region. This approach effectively captures the intricate relationships between 
these properties and cowpea yield, enabling the identification of zones with distinct 
characteristics suitable for tailored management practices. By translating complex soil 
information into an interpretable format, this methodology can facilitate decision-making 
for optimizing cowpea yield, particularly for resource-limited smallholder farmers in Brazil.

Using factor scores in cokriging offers a valuable tool for precision agriculture, enabling 
more accurate prediction of soil properties and cowpea yield. This approach can guide 
informed decision-making for optimizing fertilizer applications, irrigation strategies, and 
other management practices. 

Our study highlights the importance of management zone delineation for precision 
agriculture applications in Brazilian cowpea farms. The high precision achieved through 
our approach demonstrates the value of this strategy. For cowpea production areas with 
historically high soil property variability due to fertilizer application, our findings suggest 
methodologies utilizing multivariate spatial variability indices (regionalized factors) 
combined with factor kriging analysis are particularly beneficial.

Our multivariate approach offers distinct advantages for precision agriculture in cowpea 
farms. It overcomes the challenges associated with managing numerous soil property 
maps and simplifies interpretation through the combined application of multivariate 
factor analysis, kriging, and the SFCM grouping technique. This comprehensive approach 
facilitates the delineation of management zones, promoting environmental sustainability 
and economic competitiveness in cowpea agriculture.

Future research is necessary for a more robust evaluation of the effectiveness of this 
approach across diverse cowpea farming systems. This evaluation should include 
measurements of soil bulk density, macro-, and microporosity, particularly in the 
subsurface, and data collected using electrical conductivity and magnetic susceptibility 
sensors – tools commonly employed in precision agriculture. However, this study represents 
a significant first step towards implementing innovative precision agriculture practices 
for cowpea farms in Brazil. 
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