• en
  • pt-br

Genesis and Classification of Nitisols from Volcano-Sedimentary Lithology in Northeastern Brazil

Edivan Uchôa Cavalcanti da Costa, Jane Kelly Silva Araujo, Laércio Vieira de Melo Wanderley Neves, José Coelho de Araújo Filho, Juliet Emília Santos de Sousa, Marcelo Metri Corrêa, Mateus Rosas Ribeiro Filho, Valdomiro Severino de Souza Júnior ORCID logo

06/Feb/2019

DOI: 10.1590/18069657rbcs20180101

ABSTRACT

On the southern coast of Pernambuco State (PE), Brazil, lithotypes of the Cabo Basin (volcanic and sedimentary rocks), in association with the relief, allow the determination of the dynamics of the formation of Nitossolos Háplicos (Nitisols), including those with high levels of exchangeable aluminum. The objective of this study was to evaluate the influence of lithological diversity (basalt and sedimentary siliciclastic rocks) on the morphological, physical, chemical, and mineralogical properties of Nitossolos Háplicos along a slope (P1-summit, P2-backslope, P3-footslope) on the southern coast of PE, in order to consider its genesis and the relation of soil properties to adjacent environments and to evaluate its framing within the Brazilian Soil Classification System (SiBCS). The interaction of lithology/soil permeability and climate indicate significant differences in the mineralogical composition and dynamics of soil chemical elements. The profiles P1 and P2 are subject to monosialitization, ferralitization, and alitization processes. All profiles showed high Fe contents (ferric soils) and clay fractions, consisting primarily of kaolinite, goethite, hematite, and gibbsite, as well as quartz and feldspar in the sand and silt fractions. However, smectite minerals (P3) are probably inherited from the sedimentary source material. In the conglomerate samples, under P3, biotite, muscovite, and plagioclase were identified. Allytic characteristics (P3) are probably associated with the weathering of aluminous smectite minerals. These properties distinguish these soils from adjacent Nitossolos and other Nitossolos in Brazil. For the classification of soils according to SiBCS, considering the high levels of Fe and Al, Nitossolo Háplico distroférrico (P1 and P2) and Nitossolo Háplico alitiférrico (P3) are suggested, and according to the World Reference Base of Soils (WRB), the soils are classified as Ferritic Nitisols.

Genesis and Classification of Nitisols from Volcano-Sedimentary Lithology in Northeastern Brazil

Comments