6 results

Prediction of Topsoil Texture Through Regression Trees and Multiple Linear Regressions

Helena Saraiva Koenow Pinheiro, Waldir de Carvalho, César da Silva Chagas, Lúcia Helena Cunha dos Anjos, Phillip Ray Owens

04/Apr/2018

ABSTRACT: Users of soil survey products are mostly interested in understanding how soil properties vary in space and time. The aim of digital soil mapping (DSM) is to represent the spatial variability of soil properties quantitatively to support decision-making. The goal of this study is to evaluate DSM techniques (Regression Trees – RT and Multiple Linear Regressions – MLR) and the ability of these tools to predict mineral fraction content under a wide variability of landscapes. The study site was […]

Predicting Runoff Risks by Digital Soil Mapping

Mayesse Aparecida da Silva, Marx Leandro Naves Silva, Phillip Ray Owens, Nilton Curi, Anna Hoffmann Oliveira, Bernardo Moreira Candido

17/Oct/2016

ABSTRACT Digital soil mapping (DSM) permits continuous mapping soil types and properties through raster formats considering variation within soil class, in contrast to the traditional mapping that only considers spatial variation of soils at the boundaries of delineated polygons. The objective of this study was to compare the performance of SoLIM (Soil Land Inference Model) for two sets of environmental variables on digital mapping of saturated hydraulic conductivity and solum depth (A + B horizons) and to apply the best […]

Assessment of Digital Elevation Model for Digital Soil Mapping in a Watershed with Gently Undulating Topography

Jean Michel Moura-Bueno, Ricardo Simão Diniz Dalmolin, Alexandre ten Caten, Luis Fernando Chimelo Ruiz, Priscila Vogelei Ramos, André Carnieletto Dotto

06/Jun/2016

ABSTRACT Terrain attributes (TAs) derived from digital elevation models (DEMs) are frequently used in digital soil mapping (DSM) as auxiliary covariates in the construction of prediction models. The DEMs and information extracted from it may be limited with regard to the spatial resolution and error magnitude, and can differ in the behavior of terrain features. The objective of this study was to evaluate the quality and limitations of free DEM data and to evaluate a topographic survey (TS) underlying the […]

Artificial neural networks applied for soil class prediction in mountainous landscape of the Serra do Mar

Braz Calderano Filho, Helena Polivanov, César da Silva Chagas, Waldir de Carvalho Júnior, Emílio Velloso Barroso, Antônio José Teixeira Guerra, [...]

01/Dec/2014

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS […]

Comparison between artificial neural networks and maximum likelihood classification in digital soil mapping

César da Silva Chagas, Carlos Antônio Oliveira Vieira, Elpídio Inácio Fernandes Filho

01/Apr/2013

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such […]

Building predictive models of soil particle-size distribution

Alessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin, Pablo Miguel

01/Apr/2013

Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness […]