Slash Spatial Linear Modeling: Soybean Yield Variability as a Function of Soil Chemical Properties
05/Feb/2018
ABSTRACT: In geostatistical modeling of soil chemical properties, one or more influential observations in a dataset may impair the construction of interpolation maps and their accuracy. An alternative to avoid the problem would be to use most robust models, based on distributions that have heavier tails. Therefore, this study proposes a spatial linear model based on the slash distribution (SSLM) in order to characterize the spatial variability of soybean yields as a function of soil chemical properties. The likelihood ratio […]
Comparison between artificial neural networks and maximum likelihood classification in digital soil mapping
01/Apr/2013
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such […]
Diagnostic techniques applied in geostatistics for agricultural data analysis
01/Dec/2009
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to […]
